Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài4 tìm x
a (x+7)^2=7
b (x- căn 2)^2=2
c (x+ căn 7)^2=7
cac ban giup minh nhqnh nhe minh dang can gap
llllllllllllllllllllllllkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkjjjjjjjjjjjjjjjjjjjjjjjjwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwnnnnnnnnnnnnnnnnnnnnnnnniiiiiiiiiiiiiiiiiiiii111111111111111111111111111111111111111ggggggggggggggggggggggggddddddddđkkkksbjdhjjskjcsjcbvcnsmxcvbsjdfgdhsjznbxcvchjzmfvgy6378wịdnhxjmfhdjxkmvhfjdksirjhfrgdhsjkzsbvdjskbvcnxmscjvnghfsjkcnxmzkcnvbcmxc dshajxnbv zncbxnzc xznc bxznzfydusxzjnbvgfthyduzxkjgvabswndemfrovcixuyztFcVABSNDMFG,LHGFKSHGAFDafbgsdnhfjgkhl;lgkbshagvCFDSXCZVBMK,NHLB,VKMCFdzvBXCNMV,B./NHJMkl
KJH'G;FLCKDJSHGAZSXHGLH;JM'K
,LKJ'GVKDXHAGFSXHBGLN;M
5x2 - 7 = 38 => x2 = 9 => x = \(\pm\)3
Từ đây thay x vào \(\dfrac{3x-2}{4}\) để tìm y,z
\(A=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)-\left(\dfrac{3}{4}+\dfrac{2}{9}+\dfrac{1}{36}\right)+\dfrac{1}{64}\)
\(=\dfrac{5+9+1}{15}-\dfrac{27+8+1}{36}+\dfrac{1}{64}\)
=1/64
a, Có \(\dfrac{3x-2y}{7}=\dfrac{4x+3y}{5}\)
=> 5(3x-2y)=7(4x+3y)
=> 15x-10y=28x+21y
=> 15x-28x=21y+10y
=> -13x=31y
=> \(\dfrac{x}{y}=\dfrac{31}{-13}=\dfrac{-31}{13}\)
b,\(\dfrac{5x-2y}{3x+4y}=\dfrac{-3}{4}\)
=> 4(5x-2y)=-3(3x+4y)
=> 20x-8y= -9x-12y
=> 20x+9x=-12y+8y
=> 29x=-4y
=> \(\dfrac{x}{y}=\dfrac{-4}{29}\)
\(\left\{{}\begin{matrix}x\left(x+y+z\right)=13\\y\left(x+y+z\right)=7\\z\left(x+y+z\right)=-4\end{matrix}\right.\) \(\Leftrightarrow x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=13+7-4\)
\(\Rightarrow\left(x+y+z\right)\left(x+y+z\right)=16\)
\(\Rightarrow\left(x+y+z\right)^2=16\)
\(\Rightarrow\left[{}\begin{matrix}x+y+z=4\\x+y+z=-4\end{matrix}\right.\)
Với \(x+y+z=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{13}{4}\\y=\dfrac{7}{4}\\z=-1\end{matrix}\right.\)
Với \(x+y+z=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{13}{4}\\y=-\dfrac{7}{4}\\z=1\end{matrix}\right.\)
\(A=7+7^2+7^3+........+7^{2016}\)
\(A=7\left(1+7+7^2+7^3+........+7^{2012}+7^{2013}+7^{2014}+7^{2015}\right)\)
\(A=7\left[\left(1+7+7^2+7^3\right)+........+\left(7^{2012}+7^{2013}+7^{2014}+7^{2015}\right)\right]\)
\(A=7\left[\left(1+7+7^2+7^3\right)+........+7^{2012}\left(1+7+7^2+7^3\right)\right]\)
\(A=7\left[400+........+7^{2012}.400\right]\)
\(A=7.400\left(1+7^4+7^8+7^{12}+......+7^{2012}\right)⋮400\)
Vì \(20^2=400\) nên \(A⋮20^2\left(dpcm\right)\)