Chứng tỏ rằng đa thức sau ko có nghiệm: f(x) = x2 - x - x + 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x)=x2 - x - x + 2=x2 - x - x + 1 + 1
=x(x-1)-(x-1)+1=(x-1)(x-1)+1
=(x-1)2+1.
Do (x-1)2\(\ge\)0 (\(\forall\)x)
\(\Rightarrow\)(x-1)2+1\(\ge\) 1 >0 (\(\forall\)x)
Vậy f(x) vô nghiệm
f(x) = x^2 - x-x+2= x^2 - 1/2x- 1/2x + 1/4 + 7/4
= x(x- 1/2) - 1/2(x + 1/2) + 7/4
= x ( x+1/2) + 1/2(x + 1/2) + 7/4
= (x+ 1/2) ( x+1/2) + 7/4= (x+ 1/2)^2 + 7/4
Ta có: (x+1/2)^2 > hoặc = 0 với mọi x
Suy ra:( x + 1/2)^2 + 7/4 > 0
Vậy: f(x)= x^2 -x-x+2 không có nghiệm
Thay x = -1; x = 5 vào đa thức f(x) = x2 – 4x – 5, ta có:
f(-1) = (-1)2 – 4.(-1) – 5 = 1 + 4 – 5 = 0
f(5) = 52 – 4.5 – 5 = 25 – 20 – 5 = 0
Vậy x = -1 và x = 5 là các nghiệm của đa thức f(x) = x2 – 4x – 5
f(x)= x^2 + (x + 1)^2
= x^2 + x^2 + 2x + 1
= x^2 + x + 1/4 + x^2 + x + 1 + 1/2
= (x + 1/2)^2 + (x + 1/2)^2 + 1/2
= 2(x+1)^2 + 1/2
có: 2(x+1)^2 ≥ 0
2(x+1)^2 + 1/2 ≥ 1/2 > 0
vậy f(x) ko có nghiệm
f(x)= x^2 + (x + 1)^2
= x^2 + x^2 + 2x + 1
= x^2 + x + 1/4 + x^2 + x + 1 + 1/2
= (x + 1/2)^2 + (x + 1/2)^2 + 1/2
= 2(x+1)^2 + 1/2
có: 2(x+1)^2 ≥ 0
2(x+1)^2 + 1/2 ≥ 1/2 > 0
vậy f(x) ko có nghiệm
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
\(f\left(x\right)=x^2+x+x+2\)
\(f\left(x\right)=x^2+2x+1+1\)
\(f\left(x\right)=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\)
\(\Leftrightarrow\left(x+1\right)^2+1\ge0\)
\(\Leftrightarrow f\left(x\right)\ge1\)
Vậy f(x) > 0 nên phương trình không có nghiệm
Ta có : \(f\left(x\right)=x^2+x+x+2\)
\(=x^2+x+x+1+1\)
\(=x\left(x+1\right)+\left(x+1\right)+1\)
\(=\left(x+1\right)\left(x+1\right)+1\)
\(=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1>0\)
Vậy đa thức f(x) không có nghiệm
_Chúc bạn học tốt_
\(f\left(x\right)=x^2+1\ge1\)
=> Đa thức không có nghiệm
Thay x = -1; x = 5 vào đa thức f(x) = x2 – 4x – 5, ta có:
f(-1) = (-1)2 – 4.(-1) – 5 = 1 + 4 – 5 = 0
f(5) = 52 – 4.5 – 5 = 25 – 20 – 5 = 0
Vậy x = -1 và x = 5 là các nghiệm của đa thức f(x) = x2 – 4x – 5
Thay x = -1; x = 5 vào đa thức f(x) = x2 – 4x – 5, ta có:
f(-1) = (-1)2 – 4.(-1) – 5 = 1 + 4 – 5 = 0
f(5) = 52 – 4.5 – 5 = 25 – 20 – 5 = 0
Vậy x = -1 và x = 5 là các nghiệm của đa thức f(x) = x2 – 4x – 5
\(f\left(x\right)=x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)
Do \(\left(x+1\right)^2\ge0\Rightarrow f\left(x\right)=\left(x+1\right)^2+2\ge2>0\)
\(\Rightarrow f\left(x\right)\) vô nghiệm
Vậy đa thức f(x) không có nghiệm
Ta có:
x2-x+1=x2-\(\dfrac{1}{2}x+\dfrac{1}{2}x\)+\(\dfrac{1}{4}+\dfrac{3}{4}\)
=\(x\left(x-\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)
=\(\left(x-\dfrac{1}{2}\right)+\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)
=\(\dfrac{3}{4}\)
Vậy f(x)≥\(\dfrac{3}{4}\)∀ x
=>f(x) vô nghiệm
Câu hỏi của Nguyễn Thị Bảo An - Toán lớp 7 | Học trực tuyến
f(x)=x2 - x - x + 2=x2 - x - x + 1 + 1
=x(x-1)-(x-1)+1=(x-1)(x-1)+1
=(x-1)2+1.
Do (x-1)2≥≥0 (∀∀x)
⇒⇒(x-1)2+1≥≥ 1 >0 (∀∀x)
Vậy f(x) vô nghiệm