Cho x+y = 1 ; x>0 ; y>0. Tìm min của :
b) \(\dfrac{a^2}{x}+\dfrac{b^2}{y}\) ( a,b là hằng số dương đã cho )
c) \(\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2\)
P/s : cần gấp :(
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\sum\dfrac{1}{x+y+1}\ge\dfrac{9}{2\left(x+y+z\right)+3}=\dfrac{9}{2.1+3}=\dfrac{9}{5}\)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)
|x+1| = 6
Trường hợp 1 : x + 1 = 6 => x = 5
Trường hợp 2 : x + 1 = -6 => x = -7
|y-1| = 14
Trường hợp 1 : y - 1 = 14 => y = 15
Trường hợp 2 : y - 1 = -14 => y = -13