K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2021

\(P=\sum\dfrac{1}{x+y+1}\ge\dfrac{9}{2\left(x+y+z\right)+3}=\dfrac{9}{2.1+3}=\dfrac{9}{5}\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)

13 tháng 12 2021

Lm dùm mik bài dưới lun vs

5 tháng 9 2017

điều kiện có thiếu ko vậy

5 tháng 9 2017

à mk vt nhầm để mk sửa

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)(x+x+y+z)\geq (1+1+1+1)^2\)

\(\Rightarrow \frac{2}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{16}{2x+y+z}\)

Hoàn toàn tương tự:

\(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\geq \frac{16}{x+2y+z}\)

\(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\geq \frac{16}{x+y+2z}\)

Cộng theo vế các BĐT vừa thu được:

\(\Rightarrow 4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\geq 16\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(\Rightarrow 16\geq 16\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(\Rightarrow \frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\leq 1\)

Ta có đpcm.

14 tháng 10 2018

Ta có :

\(\dfrac{1}{2x+y+z}=\dfrac{16}{16\left(x+x+y+z\right)}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\dfrac{1}{x+2y+z}=\dfrac{16}{16\left(x+y+y+z\right)}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\dfrac{1}{x+y+2z}=\dfrac{16}{16\left(x+y+z+z\right)}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}\right)\)

Cộng từng vế của BĐT ta được :

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)=\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)

Vậy BĐT đã được chứng minh !

14 tháng 7 2018

Bài 1 :

Ta có : \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}=\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\)

Theo BĐT Cô - Si dưới dạng engel ta có :

\(\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\ge\dfrac{\left(1+2\right)^2}{3a^2+6ab+3b^2}=\dfrac{9}{3\left(a+b\right)^2}=\dfrac{9}{3.1}=3\)

Dấu \("="\) xảy ra khi : \(a=b=\dfrac{1}{2}\)

31 tháng 8 2016

ta có: \(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=x\)(dấu = xảy ra khi \(\left(y+z\right)^2=4x^2\)↔y+z=2x)

tương tự ta có:\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y;\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)(dấu = cũng xảy ra khi x+z=2y;x+y=2z)

cộng từng vế ta có:P+\(\frac{x+y+z}{2}\ge x+y+z\)

→P\(\ge\frac{x+y+z}{2}\)mà x+y+x=1

\(P\ge\frac{1}{2}\)\(\begin{cases}y+z=2x\\x+z=2y\\x+y=2z\end{cases}\)→x=y=z=1/3

4 tháng 11 2018

Theo BĐT \(AM-GM\) ta có :

\(xy+yz+zx\le\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{12^2}{3}=48\)

\(x^2+y^2+z^2\ge8\left(x+y+z\right)-\left(16+16+16\right)=48\)

Theo BĐT Cauchy schwarz dưới dạng en-gel ta có :

\(\dfrac{x^3}{y+1}+\dfrac{y^3}{z+1}+\dfrac{z^3}{x+1}=\dfrac{x^4}{xy+z}+\dfrac{y^4}{yz+y}+\dfrac{z^4}{zx+z}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{xy+yz+zx+x+y+z}=\dfrac{48^2}{48+12}=\dfrac{192}{5}\)

Vậy \(MIN_Q=\dfrac{192}{5}\) . Dấu \("="\Leftrightarrow z=y=z=4\)

13 tháng 5 2017

Áp dụng bất đẳng thức cauchy:

\(P=\sum\dfrac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}\ge\sum\dfrac{2x^2\sqrt{yz}}{y\sqrt{y}+2z\sqrt{z}}=\sum\dfrac{2\sqrt{x^3}\sqrt{xyz}}{\sqrt{y^3}+2\sqrt{z^3}}=\sum\dfrac{2\sqrt{x^3}}{\sqrt{y^3}+2\sqrt{z^3}}\)(vì xyz=1).

đặt \(\left\{{}\begin{matrix}\sqrt{x^3}=a\\\sqrt{y^3}=b\\\sqrt{z^3}=c\end{matrix}\right.\)(\(a,b,c>0\))thì giả thiết trở thành cho abc=1. tìm Min \(P=\dfrac{2a}{b+2c}+\dfrac{2b}{c+2a}+\dfrac{2c}{a+2b}\)

Áp dụng BĐT cauchy-schwarz:

\(P=2\left(\dfrac{a^2}{ab+2ac}+\dfrac{b^2}{bc+2ab}+\dfrac{c^2}{ac+2bc}\right)\ge\dfrac{2\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\dfrac{2\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=2\)( AM-GM \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\))

Dấu = xảy ra khi a=b=c=1 hay x=y=z=1

28 tháng 5 2019

Có \(18\ge x\left(x+1\right)+y\left(y+1\right)+z\left(z+1\right)=\left(x^2+y^2+z^2\right)+\left(x+y+z\right)\)

\(\ge\frac{\left(x+y+z\right)^2+3\left(x+y+z\right)+\frac{9}{4}}{3}-\frac{3}{4}=\frac{\left(x+y+z+\frac{3}{2}\right)^2}{3}-\frac{3}{4}\)

\(\Leftrightarrow\)\(\left(x+y+z+\frac{3}{2}\right)^2\le\frac{225}{4}\)\(\Leftrightarrow\)\(-9\le x+y+z\le6\)

\(B\ge\frac{9}{2\left(x+y+z\right)+3}\ge\frac{9}{15}=\frac{3}{5}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=2\)

28 tháng 5 2019

\(x\left(x+1\right)+y\left(y+1\right)+z\left(z+1\right)\le18\)

\(\Leftrightarrow x^2+y^2+z^2+x+y+z\le18\)

Ta có \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

\(\Leftrightarrow\frac{\left(x+y+z\right)^2}{3}+\left(x+y+z\right)\le18\)

Đặt: \(x+y+z=t>0\Rightarrow\frac{t^2}{3}+t\le18\Leftrightarrow\left(t+9\right)\left(t-6\right)\le0\Rightarrow t\le6\left(t>0\right)\)

\(B=\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{x+z+1}\ge\frac{9}{2\left(x+y+z\right)+3}=\frac{3}{5}\)

\("="\Leftrightarrow x=y=z=2\)