Cho tập A=(m;m+2) và tập B(0;5) . Có bao nhiêu số nguyên m để A giao B khác rỗng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,A = { 0; 1; 2; 3; 4; 5}
B = { 0; 2; 4}
Vì mọi phần tử của tập hợp B đều là phần tử của tập A nên tập B là tập con của A
Hay B \(\subset\) A (đpcm)
b, M = {0; 2; 4}
M = {0; 1; 2; 4} M = {0; 1; 2; 3; 4} M = {0; 1; 2; 3; 4; 5}
M = {0; 2; 3; 4} M = {0; 1; 2; 4; 5}
M = [0; 2; 4; 5} M = {0; 2; 3; 4; 5}
Có 8 tập M như vậy
a) A = {0; 1; 2; 3; 4}
B = {0; 2; 4}
⇒ B ⊂ A
b) M = {0; 2; 4}
Hoặc M = {0; 1; 2; 4}
Hoặc M = {0; 2; 3; 4}
Hoặc M = {0; 1; 2; 3; 4}
Vậy có thể viết được 4 tập hợp M thỏa mãn yêu cầu
Câu a: tập hợp B = {1;2;3;4;5;6;7;8}
tập hợp A = {1;2;3} (có nhiều đáp án)
Câu b: có 21 tập hợp con của tập hợp M có 2 phần tử
nếu sai nói mình
b)
=>\(\left\{{}\begin{matrix}m-1>2\\m+3\le5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>3\\m\le2\end{matrix}\right.\)(vô lý)
vậy ko tồn tại m
Lời giải:
Để $A\cap B$ rỗng thì:
$m\leq 2$ hoặc $m-9\geq 17$
$\Leftrightarrow m\leq 2$ hoặc $m\geq 26$
a, Tập hợp con của A là{1} ,{2}, A,∅
b, Để M ⊂A và M⊂B
thì M={1}
c,Vì A⊂N và B⊂N
Nên N={1;2;4}
a, Các phần tử của tập hợp A đều là phần tử của tập hợp M nên A ⊂ M. Các phần tử của tập hợp B đều là phần tử của tập hợp M nên B ⊂ M
b, Ta có 1 ∈ A nhưng 1 ∉ B nên tập hợp A không phải là tập hợp con của tập hợp B
a, Số phần tử của tập hợp M = (57 – 8) : 1 + 1 = 50 phần tử
b, M = {x ∈ ¥|8≤x≤57}
M = {x ∈ ¥|7<x<58}
M = {x ∈ ¥|8≤x<58}
M = {x ∈ ¥|7<x≤57}
c, N không phải là tập con của M vì 59 ∈ N nhưng 59 ∉ M
Các tập hợp con của M = {a; b; c} mà mỗi tập con của M phải có hai phần tử: {a; b}; {a; c}, {b; c}
\(A\cap B=\varnothing\Leftrightarrow\left[{}\begin{matrix}m+2\le0\\m\ge5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m\le-2\\m\ge5\end{matrix}\right.\)
\(\Rightarrow A\cap B\ne\varnothing\Leftrightarrow-2< m< 5\)
Có \(4-\left(-1\right)+1=6\) số nguyên m
em thưa thầy em ko hiểu vì sao từ -2<m<5 lại có 4-(-1)+1=6 ạ