K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2016

\(\frac{x+4}{2011}+\frac{x+3}{2012}=\frac{x+2}{2013}+\frac{x+1}{2014}\)

\(\Leftrightarrow\left(\frac{x+4}{2011}+1\right)+\left(\frac{x+3}{2012}+1\right)-\left(\frac{x+2}{2013}+1\right)-\left(\frac{x+1}{2014}+1\right)=0\)

\(\Leftrightarrow\frac{x+2015}{2011}+\frac{x+2015}{2012}-\frac{x+2015}{2013}-\frac{x+2015}{2014}=0\)

\(\Leftrightarrow\left(x+2015\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)

\(\Leftrightarrow x+2015=0\) (Vì: \(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\ne0\) )

\(\Leftrightarrow x=-2015\)

17 tháng 9 2018

a) \(\frac{x+4}{2009}+1+\frac{x+3}{2010}+1=\frac{x+2}{2011}+1+\frac{x+1}{2012}\)

\(\frac{x+4+2009}{2009}+\frac{x+3+2010}{2010}=\frac{x+2+2011}{2011}+\frac{x+2+2012}{2012}\)

\(\frac{x+2013}{2009}+\frac{x+2013}{2010}-\frac{x+2013}{2011}-\frac{x+2013}{2012}=0\)

\(\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)=0\)    (1)

Vì \(\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)\ne0\)

Nên biểu thức (1) xảy ra khi \(x+2013=0\)

\(x=-2013\)

b) \(\left(x-2011\right)\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)  (2)

Vì \(\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)\ne0\)

Nên biểu thức (2) xảy ra khi \(x-2011=0\)

\(x=2011\)

13 tháng 6 2015

bạn nói kết quả không thôi ư mình cần cả cách giải

Bạn xem lại đề nhé U Suck

9 tháng 7 2015

\(\frac{x+1}{2014}+\frac{x+2}{2013}=\frac{x+3}{2012}+\frac{x+4}{2011}\)

\(\frac{x+1}{2014}+1+\frac{x+2}{2013}+1=\frac{x+3}{2012}+1+\frac{x+4}{2011}+1\)

\(\frac{x+2015}{2014}+\frac{x+2015}{2013}=\frac{x+2015}{2012}+\frac{x+2015}{2011}\)

\(\frac{x+2015}{2014}+\frac{x+2015}{2013}-\frac{x+2015}{2012}-\frac{x+2015}{2011}=0\)

\(\left(x+2015\right)\left(\frac{1}{2014}+\frac{1}{2013}-\frac{1}{2012}-\frac{1}{2011}\right)=0\)

Vì \(\frac{1}{2014}+\frac{1}{2013}-\frac{1}{2012}-\frac{1}{2011}\ne0\) nên x + 2015 = 0

x = 0 - 2015

x = -2015

 

9 tháng 7 2015

\(\frac{x+1}{2014}+\frac{x+2}{2013}=\frac{x+3}{2012}+\frac{x+4}{2011}\)

\(1+\frac{x+1}{2014}+1+\frac{x+2}{2013}=1+\frac{x+3}{2012}+1+\frac{x+4}{2011}\)

\(\frac{x+1+2014}{2014}+\frac{x+2+2013}{2013}=\frac{x+3+2012}{2012}+\frac{x+4+2011}{2011}\)

\(\frac{x+2015}{2014}+\frac{x+2015}{2013}=\frac{x+2015}{2012}+\frac{x+2015}{2011}\)

\(\Rightarrow\frac{x+2015}{2014}+\frac{x+2015}{2013}-\frac{x+2015}{2012}-\frac{x+2015}{2011}=0\)

\(\Rightarrow\left(x+2015\right)\left(\frac{1}{2014}+\frac{1}{2013}-\frac{1}{2012}-\frac{1}{2011}\right)=0\)

=> x + 2015 = 0 ( vì 1/2014 + 1/2013 - 1/2012  - 1/2011 khác 0)

=> x = -2015

25 tháng 6 2018

\(\frac{x-1}{2011}+\frac{x-2}{2012}=\frac{x-3}{2013}+\frac{x-4}{2014}\)

\(\frac{x-1}{2011}+1+\frac{x-2}{2012}+1=\frac{x-3}{2013}+1+\frac{x-4}{2014}+1\)

\(\Rightarrow\frac{x+2010}{2011}+\frac{x+2010}{2012}=\frac{x+2010}{2013}+\frac{x+2010}{2014}\)

\(\Rightarrow\left(x+2010\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)

\(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}>0\)

\(\Leftrightarrow x+2010=0\Rightarrow x=-2010\)

Bạn tiếp tục áp dụng phương pháp này vào bài 2 nha nhưng bài b bạn sẽ trừ 1 ở mỗi thức

25 tháng 6 2018

\(a)\) \(\frac{x-1}{2011}+\frac{x-2}{2012}=\frac{x-3}{2013}+\frac{x-4}{2014}\)

\(\Leftrightarrow\)\(\left(\frac{x-1}{2011}+1\right)+\left(\frac{x-2}{2012}+1\right)=\left(\frac{x-3}{2013}+1\right)+\left(\frac{x-4}{2014}+1\right)\)

\(\Leftrightarrow\)\(\frac{x-1+2011}{2011}+\frac{x-2+2012}{2012}=\frac{x-3+2013}{2013}+\frac{x-4+2014}{2014}\)

\(\Leftrightarrow\)\(\frac{x-2010}{2011}+\frac{x+2010}{2012}=\frac{x+2010}{2013}+\frac{x+2010}{2014}\)

\(\Leftrightarrow\)\(\frac{x-2010}{2011}+\frac{x+2010}{2012}-\frac{x+2010}{2013}-\frac{x+2010}{2014}=0\)

\(\Leftrightarrow\)\(\left(x-2010\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)

Vì \(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\ne0\)

Nên \(x-2010=0\)

\(\Rightarrow\)\(x=2010\)

Vậy \(x=2010\)

Chúc bạn học tốt ~ 

9 tháng 8 2018

\(\frac{x-1}{2011}+\frac{x-1}{2012}+\frac{x-1}{2013}=\frac{x-1}{2014}+\frac{x-1}{2015}\)

\(\Rightarrow\frac{x-1}{2011}+\frac{x-1}{2012}+\frac{x-1}{2013}-\frac{x-1}{2014}-\frac{x-1}{2015}=0\)

\(\left(x-1\right).\left(\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)=0\)

mà \(\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\ne0\)

=> x - 1 = 0

x = 1

bn có chép sai đề ko z???

22 tháng 4 2020

Bài 1 : 

Ta có  : 

\(\frac{x+2011}{2013}+\frac{x+2012}{2012}=\frac{x+2010}{2014}+\frac{x+2013}{2011}\)

\(\Rightarrow\left(\frac{x+2011}{2013}+1\right)+\left(\frac{x+2012}{2012}+1\right)=\left(\frac{x+2010}{2014}+1\right)\)

\(+\left(\frac{x+2013}{2011}+1\right)\)

\(\Rightarrow\frac{x+4024}{2013}+\frac{x+4024}{2012}=\frac{x+4024}{2014}+\frac{x+4024}{2011}\)

\(\Rightarrow\frac{x+4024}{2013}+\frac{x+4024}{2012}-\frac{x+4024}{2014}-\frac{x+4024}{2011}=0\)

\(\Rightarrow\left(x+4024\right)\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2014}-\frac{1}{2011}\right)=0\)

\(\Rightarrow x+4024=0\)

\(\Rightarrow x=-4024\)

22 tháng 4 2020

Bài 2 : 

Đặt \(x^2+2x+1=a\Rightarrow a=\left(x+1\right)^2\ge0\)

=> Phương trình trở thành 

\(\frac{a}{a+1}+\frac{a+1}{a+2}=\frac{7}{6}\)

\(\Rightarrow\frac{a}{a+1}.6\left(a+1\right)\left(a+2\right)+\frac{a+1}{a+2}.6\left(a+1\right)\left(a+2\right)=\frac{7}{6}.6\left(a+1\right)\left(a+2\right)\)

\(\Rightarrow6a\left(a+2\right)+6\left(a+1\right)^2=7\left(a+1\right)\left(a+2\right)\)

\(\Rightarrow12a^2+24a+6=7a^2+21a+14\)

\(\Rightarrow5a^2+3a-8=0\)

\(\Rightarrow\left(a-1\right)\left(5a+8\right)=0\)

Vì \(a\ge0\Rightarrow a=1\)

\(\Rightarrow x^2+2x+1=1\)

\(x^2+2x=0\)

\(\Rightarrow x\left(x+2\right)=0\)

\(\Rightarrow x\in\left\{-2,0\right\}\)

18 tháng 6 2015

\(\frac{x+4}{2011}+\frac{x+3}{2012}=\frac{x+2}{2013}+\frac{x+1}{2014}\)

\(\frac{x+4}{2011}+1+\frac{x+3}{2012}+1=\frac{x+2}{2013}+1+\frac{x+1}{2014}+1\)

\(\frac{x+4}{2011}+\frac{2011}{2011}+\frac{x+3}{2012}+\frac{2012}{2012}=\frac{x+2}{2013}+\frac{2013}{2013}+\frac{x+1}{2014}+\frac{2014}{2014}\)

\(\frac{x+2015}{2011}+\frac{x+2015}{2012}=\frac{x+2015}{2013}+\frac{x+2015}{2014}\)

\(\frac{x+2015}{2011}+\frac{x+2015}{2012}-\frac{x+2015}{2013}-\frac{x+2015}{2014}=0\)

\(\left(x+2015\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)

vì \(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\ne0\)nên:

x+2015=0

x=-2015