K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2015

\(\frac{x+4}{2011}+\frac{x+3}{2012}=\frac{x+2}{2013}+\frac{x+1}{2014}\)

\(\frac{x+4}{2011}+1+\frac{x+3}{2012}+1=\frac{x+2}{2013}+1+\frac{x+1}{2014}+1\)

\(\frac{x+4}{2011}+\frac{2011}{2011}+\frac{x+3}{2012}+\frac{2012}{2012}=\frac{x+2}{2013}+\frac{2013}{2013}+\frac{x+1}{2014}+\frac{2014}{2014}\)

\(\frac{x+2015}{2011}+\frac{x+2015}{2012}=\frac{x+2015}{2013}+\frac{x+2015}{2014}\)

\(\frac{x+2015}{2011}+\frac{x+2015}{2012}-\frac{x+2015}{2013}-\frac{x+2015}{2014}=0\)

\(\left(x+2015\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)

vì \(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\ne0\)nên:

x+2015=0

x=-2015

13 tháng 7 2020

Bạn ơi cái phần cuối ý l mình làm sai rồi nha !

Hơi nhầm xíu nha, đáp án như bạn dưới làm ý, cho mình xin lỗi bucminh

8 tháng 1 2017

a)

\(2^x\left(1+2+2^2+2^3\right)=480\)

\(2^x.15=480\Rightarrow2^x=\frac{480}{15}=32=2^5\Rightarrow x=5\)

15 tháng 1 2017

Chính Xác 100% là X=5 

k cho mink nhé các pạn

9 tháng 8 2015

\(a,\frac{x+2}{2010}+\frac{x+2}{2011}+\frac{x+2}{2012}=\frac{x+2}{2013}+\frac{x+2}{2014}\)

\(\Leftrightarrow\frac{x+2}{2010}+\frac{x+2}{2011}+\frac{x+2}{2012}-\frac{x+2}{2013}-\frac{x+2}{2014}=0\)

\(\Leftrightarrow\left(x+2\right)\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)

\(\text{Mà }\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\ne0\text{ nên:}\)

\(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

\(b,\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Leftrightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)

\(\Leftrightarrow \frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)

\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

\(M\text{à}:\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0 n\text{ê}n:\)

\(x+2004=0\)

\(\Leftrightarrow x=-2004\)

2 tháng 4 2016

x=- 2016

21 tháng 4 2015

có 2014/1+2013/2+2012/3+...+2/2013+1/2014=[1+(2013/2)]+[1+(2012/3)]+...+[1+(2/2013)]+[1+(1/2014)]+1

=2015/2+2015/3+...+2015/2014+2015/2015=2015.[1/2+1/3+..+1/2015)

vậy (1/2+1/3+...+1/2015).x=(1/2+1/3+...+1/2015).2015

x=2015

22 tháng 3 2018

\(\frac{x+5}{2012}+\frac{x+4}{2013}=\frac{x+3}{2014}+\frac{x+2}{2015}\)

\(\Leftrightarrow\frac{x+5}{2012}+1+\frac{x+4}{2013}+1=\frac{x+3}{2014}+1+\frac{x+2}{2015}+1\)

\(\frac{x+5+2012}{2012}+\frac{x+4+2013}{2013}=\frac{x+3+2014}{2014}+\frac{x+2+2015}{2015}\)

\(\frac{x+2017}{2012}+\frac{x+2017}{2013}=\frac{x+2017}{2014}+\frac{x+2017}{2015}\)

\(\frac{x+2017}{2012}+\frac{x+2017}{2013}-\frac{x+2017}{2014}-\frac{x+2017}{2015}=0\)

\(\left(x+2017\right)\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)=0\)

Mà \(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}>0\)

\(\Rightarrow x+2017=0\)

\(\Rightarrow x=-2017\)

22 tháng 3 2018

\(\frac{x+5}{2012}+1+\frac{x+4}{2013}+1=\frac{x+3}{2014}+1+\frac{x+2}{2015}+1\)

\(\frac{x+2017}{2012}+\frac{x+2017}{2013}-\frac{x+2017}{2014}-\frac{x+2017}{2015}=0\)

\(\left(x+2017\right)\cdot\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)\)

Vì \(\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)\ne0\)

suy ra \(x+2017=0\)

suy ra  \(x=-2017\)

Vậy   \(x=-2017\)