Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+4}{2012}+\frac{x+3}{2013}=\frac{x+2}{2014}+\frac{x+1}{2015}\)
\(\Rightarrow\frac{x+4}{2012}+1+\frac{x+3}{2013}+1=\frac{x+2}{2014}+1+\frac{x+1}{2015}+1\)
\(\Rightarrow\frac{x+2016}{2012}+\frac{x+2016}{2013}=\frac{x+2016}{2014}+\frac{x+2016}{2015}\)
\(\Rightarrow\frac{x+2016}{2012}+\frac{x+2016}{2013}-\left(\frac{x+2016}{2014}+\frac{x+2016}{2015}\right)=0\)
\(\Rightarrow\left(x+2016\right)\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)=0\)
Vì \(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\ne0\)
\(\Rightarrow x+2016=0\)
\(\Rightarrow x=-2016\)
CÓ: \(\frac{x-1}{2015}+\frac{x-2}{2014}-\frac{x-3}{2013}-\frac{x-4}{2012}=0\)\(0\)
<=>\(\left(\frac{x-1}{2015}-1\right)+\left(\frac{x-2}{2014}-1\right)-\left(\frac{x-3}{2013}-1\right)-\left(\frac{x-4}{2012}-1\right)=0\)
<=>\(\frac{x-2016}{2015}+\frac{x-2016}{2014}-\frac{x-2016}{2013}-\frac{x-2016}{2012}=0\)
<=>\(\left(x-2016\right)\left(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\right)=0\)
Do:\(\left(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\right)\ne0\)
=>\(x-2016=0\)
<=>\(x=2016\)
a) \(\frac{x+4}{2009}+1+\frac{x+3}{2010}+1=\frac{x+2}{2011}+1+\frac{x+1}{2012}\)
\(\frac{x+4+2009}{2009}+\frac{x+3+2010}{2010}=\frac{x+2+2011}{2011}+\frac{x+2+2012}{2012}\)
\(\frac{x+2013}{2009}+\frac{x+2013}{2010}-\frac{x+2013}{2011}-\frac{x+2013}{2012}=0\)
\(\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)=0\) (1)
Vì \(\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)\ne0\)
Nên biểu thức (1) xảy ra khi \(x+2013=0\)
\(x=-2013\)
b) \(\left(x-2011\right)\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\) (2)
Vì \(\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)\ne0\)
Nên biểu thức (2) xảy ra khi \(x-2011=0\)
\(x=2011\)
\(\Leftrightarrow\frac{x+1}{2009}+\frac{x+1}{2010}+\frac{x+1}{2011}-\frac{x+1}{2012}-\frac{x+1}{2013}-\frac{x+1}{2014}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}=0\end{cases}}\)
mà \(\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\ne0\)
nên \(x+1=0\)
\(\Leftrightarrow x=-1\)
cộng 1 vào mỗi tỉ số ta được:
\(\frac{x+1}{2016}+1+\frac{x+2}{2015}+1+\frac{x+3}{2014}+1=\frac{x+4}{2013}+1+\frac{x+5}{2012}+\frac{x+6}{2011}\)
=>\(\frac{x+1}{2016}+\frac{2016}{2016}+\frac{x+2}{2015}+\frac{2015}{2015}+\frac{x+3}{2014}+\frac{2014}{2014}=\frac{x+4}{2013}+\frac{2013}{2013}+\frac{x+5}{2012}+\frac{2012}{2012}+\frac{x+6}{2011}+\frac{2011}{2011}\)
=>
\(\frac{x+2017}{2016}+\frac{x+2017}{2015}+\frac{x+2017}{2014}=\frac{x+2017}{2013}+\frac{x+2017}{2012}+\frac{x+2017}{2011}\)
=>
\(\frac{x+2017}{2016}+\frac{x+2017}{2015}+\frac{x+2017}{2014}-\left(\frac{x+2017}{2013}+\frac{x+2017}{2012}+\frac{x+2017}{2011}\right)=0\)
=>
\(\frac{x+2017}{2016}+\frac{x+2017}{2015}+\frac{x+2017}{2014}-\frac{x+2017}{2013}-\frac{x+2017}{2012}-\frac{x+2017}{2011}=0\)
=>(x+2017).(1/1016+1/2015+1/2014-1/2013-1/2012-1/2011)=0
dễ thấy 1/2016<1/2015<1/2014<1/2013<1/2012<1/2011
=>1/2016+...-1/2011 khác 0
=>x+2017=0
=>x=-2017
nhớ tick
\(\frac{x+4}{2011}+\frac{x+3}{2012}=\frac{x+2}{2013}+\frac{x+1}{2014}\)
\(\Leftrightarrow\left(\frac{x+4}{2011}+1\right)+\left(\frac{x+3}{2012}+1\right)-\left(\frac{x+2}{2013}+1\right)-\left(\frac{x+1}{2014}+1\right)=0\)
\(\Leftrightarrow\frac{x+2015}{2011}+\frac{x+2015}{2012}-\frac{x+2015}{2013}-\frac{x+2015}{2014}=0\)
\(\Leftrightarrow\left(x+2015\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)
\(\Leftrightarrow x+2015=0\) (Vì: \(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\ne0\) )
\(\Leftrightarrow x=-2015\)
\(\frac{x-1}{2011}+\frac{x-1}{2012}+\frac{x-1}{2013}=\frac{x-1}{2014}+\frac{x-1}{2015}\)
\(\Rightarrow\frac{x-1}{2011}+\frac{x-1}{2012}+\frac{x-1}{2013}-\frac{x-1}{2014}-\frac{x-1}{2015}=0\)
\(\left(x-1\right).\left(\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)=0\)
mà \(\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\ne0\)
=> x - 1 = 0
x = 1
bn có chép sai đề ko z???