a) Phân tích đa thức thành nhân tử:
2x3+x2-13x+6
b) Tìm các cặp số x;y thỏa mãn: 2x2+y2-6x+2xy-2y+5=0
giúp mk vs mk cần gấp nha. mai mk pải nộp r.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(x^2+5x-6=\left(x+6\right)\left(x-1\right)\)
b: \(5x^2+5xy-x-y\)
\(=5x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(5x-1\right)\)
c:\(-6x^2+7x-2\)
\(=-6x^2+3x+4x-2\)
\(=-3x\left(2x-1\right)+2\left(2x-1\right)\)
\(=\left(2x-1\right)\left(-3x+2\right)\)
1.
a) \(=x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2\)
b) \(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
c) \(=5\left[\left(x^2-2xy+y^2\right)-4z^2\right]=5\left[\left(x-y\right)^2-4z^2\right]\)
\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)
2.
a) \(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
b) \(=5x\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(5x-1\right)\)
c) \(=-\left[3x\left(2x-1\right)-2\left(2x-1\right)\right]=-\left(2x-1\right)\left(3x-2\right)\)
3.
b) \(=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)
c) \(=-\left[5x\left(x-3\right)-1\left(x-3\right)\right]=-\left(x-3\right)\left(5x-1\right)\)
4.
a) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
b) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
a: \(x^2-6x+5=\left(x-5\right)\left(x-1\right)\)
b: \(x^2-x-12=\left(x-4\right)\left(x+3\right)\)
c: \(x^2+8x+15=\left(x+5\right)\left(x+3\right)\)
d: \(2x^2-5x-12=\left(x-4\right)\left(2x+3\right)\)
e: \(x^2-13x+36=\left(x-9\right)\left(x-4\right)\)
\(-2x^3+x^2+12\)
\(=-2x^3+4x^2-3x^2+6x-6x+12\)
\(=-2x^2\left(x-2\right)-3x\left(x-2\right)-6\left(x-2\right)\)
\(=\left(x-2\right)\left(-2x^2-3x-6\right)\)
\(8x^4+81\)
\(=8x^4+2\cdot2\sqrt{2}\cdot x^2\cdot9+81-36\sqrt{2}\cdot x^2\)
\(=\left(2\sqrt{2}x^2+9\right)^2-\left(6\sqrt[4]{2}\cdot x\right)^2\)
\(=\left(2\sqrt{2}\cdot x^2-6\sqrt[4]{2}\cdot x+9\right)\left(2\sqrt{2}\cdot x^2+6\sqrt[4]{2}\cdot x+9\right)\)
a: Ta có: \(x^2-4y^2-2x-4y\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
c: Ta có: \(x^3+2x^2y-x-2y\)
\(=x^2\left(x+2y\right)-\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-1\right)\left(x+1\right)\)
d: Ta có: \(3x^2-3y^2-2\cdot\left(x-y\right)^2\)
\(=3\left(x-y\right)\left(x+y\right)-2\cdot\left(x-y\right)^2\)
\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)
\(=\left(x-y\right)\left(x+5y\right)\)
e: Ta có: \(x^3-4x^2-9x+36\)
\(=x^2\left(x-4\right)-9\left(x-4\right)\)
\(=\left(x-4\right)\left(x-3\right)\left(x+3\right)\)
f: Ta có: \(x^2-y^2-2x-2y\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-2\right)\)
a) (x - y)(x + y + 3). b) (x + y - 2xy)(2 + y + 2xy).
c) x 2 (x + l)( x 3 - x 2 + 2). d) (x – 1 - y)[ ( x - 1 ) 2 + ( x - 1 ) y + y 2 ].
`1)x^3-7x+6`
`=x^3-x-6x+6`
`=x(x-1)(x+1)-6(x-1)`
`=(x-1)(x^2+x-6)`
`=(x-1)(x^2-2x+3x-6)`
`=(x-1)[x(x-2)+3(x-2)]`
`=(x-1)(x-2)(x+3)`
`2)x^3-9x^2+6x+16`
`=x^3-2x^2-7x^2+14x-8x+16`
`=x^2(x-2)-7x(x-2)-8(x-2)`
`=(x-2)(x^2-7x-8)`
`=(x-2)(x^2-8x+x-8)`
`=(x-2)[x(x-8)+x-8]`
`=(x-2)(x-8)(x+1)`
`3)x^3-6x^2-x+30`
`=x^3+2x^2-8x^2-16x+15x+30`
`=x^2(x+2)-8x(x+2)+15(x+2)`
`=(x+2)(x^2-8x+15)`
`=(x+2)(x^2-3x-5x+15)`
`=(x+2)[x(x-3)-5(x-3)]`
`=(x+2)(x-3)(x-5)`
`4)2x^3-x^2+5x+3`
`=2x^3+x^2-2x^2-x+6x+3`
`=x^2(2x+1)-x(2x+1)+3(2x+1)`
`=(2x+1)(x^2-x+3)`
`5)27x^3-27x^2+18x-4`
`=27x^3-9x^2-18x^2+6x+12x-4`
`=9x^2(3x-1)-6x(3x-1)+4(3x-1)`
`=(3x-1)(9x^2-6x+4)`
1) Ta có: \(x^3-7x+6\)
\(=x^3-x-6x+6\)
\(=x\left(x^2-1\right)-6\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x-6\right)\)
\(=\left(x-1\right)\left(x+3\right)\left(x-2\right)\)
2) Ta có: \(x^3-9x^2+6x+16\)
\(=x^3-2x^2-7x^2+14x-8x+16\)
\(=x^2\left(x-2\right)-7x\left(x-2\right)-8\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-7x-8\right)\)
\(=\left(x-2\right)\left(x-8\right)\left(x+1\right)\)
3) Ta có: \(x^3-6x^2-x+30\)
\(=x^3+2x^2-8x^2-16x+15x+30\)
\(=x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-8x+15\right)\)
\(=\left(x+2\right)\left(x-3\right)\left(x-5\right)\)
a) \(x^4+2x^3-4x-4=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)
a) Ta có: \(x^4+2x^3-4x-4\)
\(=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)
\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\cdot\left(x^2+2x+2\right)\)
e: \(x^4-2x^3+x^2\)
\(=x^2\cdot x^2-x^2\cdot2x+x^2\cdot1\)
\(=x^2\left(x^2-2x+1\right)\)
\(=x^2\left(x-1\right)^2\)
f: \(27y^3-x^3\)
\(=\left(3y\right)^3-x^3\)
\(=\left(3y-x\right)\left(9y^2+3xy+x^2\right)\)
a: \(2x^3+x^2-13x+6\)
\(=2x^3-4x^2+5x^2-10x-3x+6\)
\(=\left(x-2\right)\left(2x^2+5x-3\right)\)
\(=\left(x-2\right)\left(2x^2+6x-x-3\right)\)
\(=\left(x-2\right)\left(x+3\right)\left(2x-1\right)\)
b: \(2x^2+y^2-6x+2xy-2y+5=0\)
\(\Leftrightarrow x^2+2xy+y^2+x^2-4x+4-2x-2y+1=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-2\right)^2-2\left(x+y\right)+1=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(x+y-1\right)^2=0\)
=>x-2=0 và x+y-1=0
=>x=2 và y=-1