CMR:
4n2+3n+5⋮6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$n^4+3n^3+4n^2+3n+1=(n+1)^2(n^2+n+1)$
Nếu đây là scp thì $n^2+n+1$ cũng phải là scp
Đặt $n^2+n+1=t^2$ với $t$ tự nhiên
$\Leftrightarrow 4n^2+4n+4=(2t)^2$
$\Leftrightarrow (2n+1)^2+3=(2t)^2$
$\Leftrightarrow 3=(2t-2n-1)(2t+2n+1)$
$\Rightarrow 2t+2n+1=3; 2t-2n-1=1$
$\Rightarrow n=0$ (trái giả thiết)
Vậy có nghĩa là $n^2+n+1$ không là scp với mọi $n\in\mathbb{N}^*$
$\Rightarrow n^4+3n^3+4n^2+3n+1$ không là scp với mọi $n\in\mathbb{N}^*$
Ta có đpcm.
a) Rút gọn được A = ( k 3 – 64) – (128 + k 3 ) = -192.
b) Rút gọn được B = -19 m 3 + 35 n 3 .
1) Ta có: 3n2+3n
= 3(n2+n) \(⋮\) 3
Vì n là STN nên:
TH1: n là số tự nhiên lẻ.
\(\Rightarrow\)n2 sẽ lẻ \(\Rightarrow\) n2+n bằng lẻ cộng lẻ và bằng chẵn \(\Rightarrow\) n2+n \(⋮\) 2 \(\Rightarrow\) 3(n2+n) \(⋮\) 2
\(\Rightarrow\) 3n2+3n \(⋮\) 2
Vì 3n2+3n chia hết cho 3 và cũng chia hết cho 2 nên số đó chia hết cho 6.
TH2: n là số tự nhiên chẵn.
\(\Rightarrow\) n2 sẽ chẵn \(\Rightarrow\) n2+n bằng chẵn cộng chẵn bằng chẵn \(\Rightarrow\) n2+n \(⋮\) 2\(\Rightarrow\)
3(n2+n) \(⋮\) 2\(\Leftrightarrow\) 3n2+3n \(⋮\) 2
Vì 3n2+3n chia hết cho 3 và chia hết cho 2 nên số đó chia hết cho 6.
Vậy với mọi trường hợp số tự nhiên thì 2n2+3n đều chia hết cho 6. Vậy với mọi n là số tự nhiên thì 2n2+3n sẽ chia hết cho 6 (đpcm)
3)
Gọi 5 số tự nhiên liên tiếp là k; k+1; k+2; k+3; k+4
Tích của chúng là k(k+1)(k+2)(k+3)(k+4)
Trong 5 số tự nhiên liên tiếp có ít nhất 2 số chẵn liên tiếp. Mà tích 2 số chẵn liên tiếp 8k(k+1)(k+2)(k+3)(k+4)(1)
Trong 5 số tự nhiên liên tiếp có ít nhất 1 số k(k+1)(k+2)(k+3)(k+4) (2)
Trong tích 5 số tự nhiên liên tiếp có tích của 3 số tự nhiên liên tiếp mà tích của 3 số tự nhiên liên tiếpk(k+1)(k+2)(k+3)(k+4) (3)
Từ (1),(2),(3) và ƯCLN(3;5;8)=1k(k+1)(k+2)(k+3)(k+4)=120
Vậy tích của 5 số tự nhiên liên tiếp
\(=3^3.3^n+3.3^n+2^3.2^n+2^2.2^n=\)
\(=3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)=30.3^n+12.2^n=\)
\(=6\left(5.3^n+2.2^n\right)⋮6\)
\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^{n+1}\left(9+3\right)+2^{n+2}\left(8+4\right)\)
\(=12.3^{n+1}+12.2^{n+2}=12.\left(3^{n+1}+2^{n+2}\right)\)
mà 12⋮6
\(\Rightarrow12.\left(3^{n+1}+2^{n+2}\right)⋮6\Rightarrow dpcm\)
Đề bài sai
Thử với n=2;3;4... đều sai
Điều này chỉ đúng khi \(n=6k+1\)
n nguyen to lon hon 3 nua a