K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2016

Gọi BH là x. Ta có HC = BC - BH
                              HC = 100 - x

Ta có AH​2 ​= BH.HC (he thuc luong)
          48​2​= x(100-x)
          2304= 100x - x​2
<=> -2304 = x​2 - 100x = x​2 ​- 2.50.x 
<=> -2304 +2500 = x​2 - 2.50.x  +2500 (cộng cùng một số hạng vào 2 vế )
<=> 196 = (x-50)​2
<=> x-50 = căng (196) = ​14
<=> x= 14+50
<=> x= 64 cm
Vậy BH=64 còn CH = BC- BH= 36cm

áp dụng hệ thức lượng trong tam giác vuôn ABC có AH là đường cao để tính độ dài các cạnh như bình thường!

27 tháng 8 2016

ko biết làm

9 tháng 8 2020

đề  có bị thiếu ko bn

b: BH=36cm

CH=64cm

AB=60cm

AC=80cm

b: BH=36cm

CH=64cm

AB=60cm

AC=80cm

 

f: AC/AB=4/3

nên AC=4/3AB=40/3(cm)

=>BC=50/3(cm)

=>AH=8(cm)

=>BH=6(cm)

=>CH=32/3(cm)

b: BH=36(cm)

CH=64(cm)

AB=60(cm)

AC=80(cm)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AB^2=10^2-8^2=36\)

hay AB=6(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AB\cdot AC=AH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{36}{10}=3.6\left(cm\right)\\CH=\dfrac{64}{10}=6.4\left(cm\right)\\AH=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\end{matrix}\right.\)

Xét ΔABC vuông tại A có 

\(AB^2+AC^2=BC^2\)

hay AC=8(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4,8\left(cm\right)\\BH=3,6\left(cm\right)\\CH=6,4\left(cm\right)\end{matrix}\right.\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: ta có: ΔABC\(\sim\)ΔHBA

nên BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

10 tháng 5 2022

a.Xét tam giác ABC và tam giác HBA, có:

^B: chung

^BAC = ^BHA = 90 độ

Vậy tam giác ABC đồng dạng tam giác HBA (g.g)

b.\(\rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)

\(\Leftrightarrow AB^2=BH.BC\left(đfcm\right)\) (1)

c.Áp dụng định lý pitago \(\Rightarrow BC=\sqrt{6^2+10^2}=2\sqrt{34}\left(cm\right)\)

(1) \(\Leftrightarrow6^2=2\sqrt{34}BH\)

\(\Leftrightarrow BH=\dfrac{9\sqrt{34}}{17}\left(cm\right)\)

Áp dụng định lý pitago trong tam giác ABH \(\Rightarrow AH=\sqrt{6^2-\left(\dfrac{9\sqrt{34}}{17}\right)^2}=\dfrac{15\sqrt{34}}{17}\left(cm\right)\)