Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f: AC/AB=4/3
nên AC=4/3AB=40/3(cm)
=>BC=50/3(cm)
=>AH=8(cm)
=>BH=6(cm)
=>CH=32/3(cm)
b: BH=36(cm)
CH=64(cm)
AB=60(cm)
AC=80(cm)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AB^2=10^2-8^2=36\)
hay AB=6(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AB\cdot AC=AH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{36}{10}=3.6\left(cm\right)\\CH=\dfrac{64}{10}=6.4\left(cm\right)\\AH=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\end{matrix}\right.\)
Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
hay AC=8(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4,8\left(cm\right)\\BH=3,6\left(cm\right)\\CH=6,4\left(cm\right)\end{matrix}\right.\)
Gọi HC là x (x>0)
Xét \(\Delta ABC\) vuông tại A, đường cao AH:
AC2=HC.BC (ĐL1)
\(\Rightarrow\) AC2=x.(x+BH)
\(\Rightarrow\) 256=x2+9x
\(\Rightarrow\) x2+9x-256=0 (1)
Giải pt (1) ta được x\(\approx\) 12,12
Suy ra HC\(\approx\)12,12
Suy ra BC\(\approx\) 21,12
Suy ra AB\(\approx\) 13,79
Suy ra AH\(\approx\) 10,45
Gọi BH là x. Ta có HC = BC - BH
HC = 100 - x
Ta có AH2 = BH.HC (he thuc luong)
482= x(100-x)
2304= 100x - x2
<=> -2304 = x2 - 100x = x2 - 2.50.x
<=> -2304 +2500 = x2 - 2.50.x +2500 (cộng cùng một số hạng vào 2 vế )
<=> 196 = (x-50)2
<=> x-50 = căng (196) = 14
<=> x= 14+50
<=> x= 64 cm
Vậy BH=64 còn CH = BC- BH= 36cm
áp dụng hệ thức lượng trong tam giác vuôn ABC có AH là đường cao để tính độ dài các cạnh như bình thường!