CMR biểu thức A= n(2n-3)-2n(n+1)luôn chia hết cho 5 với mọi n thuộc z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= n(2n-3)-2n(n+1)
A= 2n2-3n-2n2-2n
A=-5n
vì -5 chia hết cho 5
Nên -5n chia hết cho 5
hay A chia hết cho 5 với n thuộc z
n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= -5n
= (-1).5n \(⋮5\)
(n - 1)(3 - 2n) - n (n + 5)
= 3n - 2n2 - 3 + 2n - n2 - 5n
= -3n2 - 3
= 3(- n2 - 1)\(⋮3\)
Ta có : n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= 2n2 - 2n2 - 3n - 2n
= -5n
Mà n nguyên nên -5n chia hết cho 5
a, Ta có
n(2n-3)-2n(n+1)=2n2-3n-2n2-2n
=-5n chia hết cho 5
=> DPCM
b, Ta có (2m-3)(3n-2)-(3m-2)(2n-3)
Lại có (2m-3)(3n-2)=-(3-2m)(3-2n)=(3-2m)(2n-3)
=> (2m-3)(3n-2)-(3m-2)(2n-3)=(2m-3)(3n-2)-(2m-3)(3-2n)=0
=> (2m-3)(3n-2)-(3m-2)(2n-3)=0
=>(2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5
=> DPCM
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
Ta có: n(2n – 3) – 2n(n + 1) = 2 n 2 – 3n – 2 n 2 – 2n = - 5n
Vì -5 ⋮ 5 nên -5n ⋮ 5 với mọi n ∈ Z .
\(n\left(2n-3\right)-2n\left(n+1\right)=2n^2-3n-2n^2-2n=-5n\) nên sẽ luôn chia hết cho 5 với mọi n là số nguyên
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= -5n
Vậy n(2n - 3) - 2n(n + 1) chia hết cho 5 với mọi n
A= n(2n-3)-2n(n+1)
A= 2n2-3n-2n2-2n
A=-5n
vì -5 chia hết cho 5
Nên -5n chia hết cho 5
hay A chia hết cho 5 với n thuộc z