K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2015

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+....+\frac{1}{998.999.1000}\)

\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{998.999.1000}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{998.999}-\frac{1}{999.1000}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{999.1000}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{999000}\right)\)

\(=\frac{1}{2}.\left(\frac{499500}{999000}-\frac{1}{999000}\right)\)

\(=\frac{1}{2}.\frac{499499}{999000}\)

\(=\frac{499499}{1998000}\)

13 tháng 3 2017

4994999/1998000

18 tháng 4 2019

\(C=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{998\cdot999\cdot1000}\)

\(C=\frac{1}{2}\left[\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{998\cdot999\cdot1000}\right]\)

\(C=\frac{1}{2}\left[\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{998\cdot999}-\frac{1}{999\cdot1000}\right]\)

\(C=\frac{1}{2}\left[\frac{1}{2}-\frac{1}{999\cdot1000}\right]\)

Tính nốt :v

Ta có

\(C=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{998\cdot999\cdot1000}\)

\(\Rightarrow2C=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{998\cdot999\cdot1000}\)

\(=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{998\cdot999}-\frac{1}{999\cdot1000}\)

\(=\frac{1}{1\cdot2}-\frac{1}{999\cdot1000}\)

\(=\frac{1}{2}-\frac{1}{999000}\)

\(=\frac{499500}{999000}-\frac{1}{999000}\)

\(=\frac{499499}{999000}\)

\(\Rightarrow C=\frac{499499}{1998000}\)

đúng nha bạn nhớ k mik

2 tháng 4 2019

Giải :

\(\text{S}=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{998\cdot999\cdot1000}\)

\(\text{S}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{998}-\frac{1}{999}+\frac{1}{999}-\frac{1}{1000}\)

\(\text{S}=1-\frac{1}{1000}=\frac{999}{1000}\)

2 tháng 4 2019

\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{998.999.1000}\)

  \(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{998.999.1000}\right)\)

  \(=\frac{1}{2}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{1000-998}{998.999.1000}\right)\)

 \(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{998.999}-\frac{1}{999.1000}\right)\)

 \(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{999.1000}\right)\)

 \(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{999000}\right)\)

 \(=\frac{1}{2}.\frac{499499}{999000}\)

 \(=\frac{499499}{1998000}\)

Study well ! >_<

20 tháng 7 2023

a/

\(b=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)

\(2b=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{99-97}{97.99}=\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}=\)

\(=1-\dfrac{1}{99}=\dfrac{98}{99}\Rightarrow b=\dfrac{98}{2.99}=\dfrac{49}{99}\)

b/

\(c=\dfrac{3-1}{1.2.3}+\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}=\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+\dfrac{1}{98.99}-\dfrac{1}{99.100}=\)

\(=\dfrac{1}{2}-\dfrac{1}{99.100}\)

c/

\(\dfrac{2}{5}.d=\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}+\dfrac{101-99}{99.100.101}=\)

\(=\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}+\dfrac{1}{99.100}-\dfrac{1}{100.101}=\)

\(=\dfrac{1}{2.3}-\dfrac{1}{100.101}\Rightarrow d=\left(\dfrac{1}{2.3}-\dfrac{1}{100.101}\right):\dfrac{2}{5}\)

24 tháng 9 2021

4A = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]

4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4

4A = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]

4A = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)

4A = (n – 1).n(n + 1).(n + 2)

A = (n – 1).n(n + 1).(n + 2) : 4.

24 tháng 9 2021

cau a thi sao ha ban ? 

7 tháng 5 2018

tao có:

2p=2/1.2.3+2/2.3.4+...+2/n.n(+1)n(n+2)

2p=3-1/1.2.3+4-2/1.2.3+...+(n+2)-n/n.(n+1).(n+2)

2p=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+(n+2)/n.(n+1).(n+2)-n/n.(n+1).(n+2)

2p=1/1.2-1/2.3+1/2.3-1/3.4+...+1/n.(n+1)-1/(n+1).(n+2)

2p=1/1.2-1/(n+1).(n+2)

2p=(n+!).(n+2)-2/(2n+2).(n+2)

suy ra p=(n+1).(n+2)-2/(2n+2).(2n+4)

2s=3-1/1.2.3+4-2/1.2.3+...+50-48/48.49.50

2s=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+50/49.50.48-48/48.50.49

2s=1/1.2-1/2.3+1/2.3-1/3.4+...+1/48.49-1/49.50

2s=1/1.2-1/49.50

'2s=1/2-1/2450

2s=1225/2450-1/2450

2s=1224/2450

s=612/1225

8 tháng 5 2018

\(P=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)1

\(P=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)}{2}\)

S cx tinh giong v

3 tháng 5 2016

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{49.50.51}\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-....-\frac{1}{50.51}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2550}\right)=\frac{637}{2550}\)

3 tháng 5 2016

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{49.50.51}\)

\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{49.50.51}\)

ta có dạng tổng quát

\(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)-\left(n+2\right)}=\frac{2}{n\left(n+1\right)\left(n+2\right)}\) bạn quy đồng ra rồi tính nha

\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{49.50}-\frac{1}{50.51}\)

\(2A=\frac{1}{1.2}-\frac{1}{50.51}\)

\(2A=\frac{637}{1275}\)

\(A=\frac{637}{2550}\)

30 tháng 3 2016

\(M=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{10.11}-\frac{1}{11.12}\)

\(M=\frac{1}{2}-\frac{1}{11.12}=\frac{65}{132}\)