Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/2{(1/1*2-1/2*3)+(1/2*3-1/3*4)+(1/3*4-1/4*5)+...+(1/18*19-1/19*20)}
=1/2{1/1*2-1/19*20}
=1/2*189/380
=189/760
vì 189/760<1/4
nên A=...<1/4
\(B=1.2.3+2.3.4+.........+\left(n-1\right)n\left(n+1\right)\)
\(\Leftrightarrow4B=1.2.3.4+2.3.4.4+........+\left(n-1\right)n\left(n+1\right).4\)
\(\Leftrightarrow4B=\left(4-0\right).1.2.3+\left(5-1\right).2.3.4+.........+\left[\left(n+2\right)-\left(n-2\right)\right]\left(n-1\right)n\left(n+1\right)\)
\(\Leftrightarrow4B=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+.......+\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-2\right)\left(n-1\right)n\left(n+1\right)\)
\(\Leftrightarrow4B=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
\(\Leftrightarrow B=\dfrac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)
Ta có:
B=1.2.3+2.3.4+...+(n-1)n(n+1)
=> 4B=1.2.3.4+2.3.4.(5-1)+...+(n-1)n(n+1)((n+2)-(n-2))
=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+(n-1)n(n+1)(n+2)-(n-2)(n-1)n(n+1)
=(n-1)n(n+1)(n+2)
=> B=\(\dfrac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)
Vậy B=\(\dfrac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)
Câu 3:
Theo đề, ta có;
\(\left\{{}\begin{matrix}4a+2b+c=3\\-\dfrac{b}{2a}=1\\-\dfrac{b^2-4ac}{4a}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\b^2-4ac=-8a\\4a+2b+c=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\4a^2-4ac=-8a\\4a+2b+c=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\4a\left(a-c\right)=4a\cdot\left(-2\right)\\4a+2b+c=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\c=a+2\\4a-4a+a+2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=3\end{matrix}\right.\)
Câu 3:
Theo đề, ta có;
\(\left\{{}\begin{matrix}4a+2b+c=3\\-\dfrac{b}{2a}=1\\-\dfrac{b^2-4ac}{4a}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\b^2-4ac=-8a\\4a+2b+c=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\4a^2-4ac=-8a\\4a+2b+c=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\4a\left(a-c\right)=4a\cdot\left(-2\right)\\4a+2b+c=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\c=a+2\\4a-4a+a+2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=3\end{matrix}\right.\)
Do mình chờ duyệt lâu quá nên các bạn thông cảm giả được báo cho mình
A PHONES
tables chopsiks wardrobes bed fridges dishes desks house rooms lamps posters shinks toilets qpartments laptops buildings books clocks |
/s/ | /is | /z/ |
|
Đề bài đúng k z?@@
Hình như là \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2016\)thì phải?
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{49.50.51}\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-....-\frac{1}{50.51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2550}\right)=\frac{637}{2550}\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{49.50.51}\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{49.50.51}\)
ta có dạng tổng quát
\(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)-\left(n+2\right)}=\frac{2}{n\left(n+1\right)\left(n+2\right)}\) bạn quy đồng ra rồi tính nha
\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{49.50}-\frac{1}{50.51}\)
\(2A=\frac{1}{1.2}-\frac{1}{50.51}\)
\(2A=\frac{637}{1275}\)
\(A=\frac{637}{2550}\)