7, cho tg ABC vg tại A và góc B=30 độ, BC= 12cm. Tính độ dài 2 cạnh còn lại và độ dài đg cao AH của tg đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xet ΔABC và ΔHBA có
góc ABC chung
góc BAC=góc BHA
=>ΔABC đồng dạng với ΔHBA
2: \(BC=\sqrt{12^2+16^2}=20\)
AH=16*12/20=9,6
BH=12^2/20=7,2
3: góc AMN=góc HMB=90 độ-góc CBN
góc ANM=90 độ-góc ABN
mà góc CBN=góc ABN
nên góc AMN=góc ANM
=>ΔAMN cân tại A
Giả sử AC là cạnh lớn hơn
Theo định lý Pitago: \(AB^2+AC^2=BC^2\Leftrightarrow AB^2+AC^2=100\) (1)
Gọi D là chân đường phân giác trong góc A trên BC
Theo giả thiết: \(\dfrac{BD}{CD}=\dfrac{3}{4}\)
Mà theo định lý phân giác: \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\Rightarrow\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{4}AC\) (2)
Thế (2) vào (1):
\(\left(\dfrac{3}{4}AC\right)^2+AC^2=100\Rightarrow AC^2=64\)
\(\Rightarrow AC=8\left(cm\right)\)
\(AB=\dfrac{3}{4}AC=\dfrac{3}{4}.8=6\left(cm\right)\)
a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{ACH}\) chung
Do đó: ΔABC\(\sim\)ΔHAC(g-g)
b) Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow HC^2=AC^2-AH^2=30^2-24^2=324\)
hay HC=18(cm)
Ta có: ΔABC∼ΔHAC(cmt)
nên \(\dfrac{AB}{HA}=\dfrac{BC}{AC}=\dfrac{AC}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AB}{24}=\dfrac{BC}{30}=\dfrac{30}{18}=\dfrac{5}{3}\)
Suy ra: \(\left\{{}\begin{matrix}\dfrac{AB}{24}=\dfrac{5}{3}\\\dfrac{BC}{30}=\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=40\left(cm\right)\\BC=50\left(cm\right)\end{matrix}\right.\)
Vậy: HC=18cm; AB=40cm; BC=50cm
I