Giải bất pt:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}3x+1< x-7\\1-2x>x+1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x< -8\\3x< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< -4\\x< 0\end{matrix}\right.\) \(\Rightarrow x< -4\)
Vậy nghiệm của hệ là \(S=\left(-\infty;-4\right)\)
\(7\left(2x-4\right)>1-4x\)
\(\Leftrightarrow14x-28-1+4x>0\)
\(\Leftrightarrow x>\dfrac{29}{18}\)
Xét \(5-x=0\Leftrightarrow x=5\)
\(x-1=0\Leftrightarrow x=1\)
\(2+3x=0\Leftrightarrow x=-\dfrac{2}{3}\)
Bảng xét dấu:
Để VT\(\le\)0 <=>\(\left[{}\begin{matrix}-\dfrac{2}{3}\le x\le1\\x\ge5\end{matrix}\right.\)
Vậy...
Điều kiện xác định : \(x+2\ne0\) hay \(x\ne-2\)
Ta có :
\(\frac{x-1}{x+2}< 0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-1< 0\\x+2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x>-2\end{cases}}}\)
\(\Rightarrow\)\(-2< x< 1\)
Trường hợp 2 :
\(\hept{\begin{cases}x-1>0\\x+2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x< -2\end{cases}}}\) ( loại )
Vậy \(-2< x< 1\)
Chúc bạn học tốt ~
\(2+\dfrac{3\left(x+1\right)}{3}\le3-\dfrac{x-1}{4}\)
\(\Leftrightarrow2+x+1\le\dfrac{12}{4}-\dfrac{x-1}{4}\)
\(\Leftrightarrow x+3\le\dfrac{13-x}{4}\)
\(\Leftrightarrow\dfrac{4x+12}{4}\le\dfrac{13-x}{4}\)
\(\Leftrightarrow4x+12\le13-x\)
\(\Leftrightarrow4x+x\le13-12\)
\(\Leftrightarrow5x\le1\)
\(\Leftrightarrow x\le\dfrac{1}{5}\)
Vậy: \(x\le\dfrac{1}{5}\)
\(2+\dfrac{3\left(x+1\right)}{3}\le3-\dfrac{x-1}{4}\)
\(\Leftrightarrow\dfrac{12x+36}{12}\le\dfrac{33-3x}{12}\)
\(\Leftrightarrow12x+36\le33-3x\)
\(\Leftrightarrow12x+3x\le-36+33\)
\(\Leftrightarrow15x\le-3\)
\(\Leftrightarrow x\le\dfrac{-1}{5}\)
\(\frac{2x+2}{5}+\frac{3}{10}< \frac{3x-2}{4}\)
\(\Leftrightarrow\)\(\frac{4\left(2x+2\right)}{20}+\frac{6}{20}< \frac{5\left(3x-2\right)}{20}\)
\(\Rightarrow\)\(8x+8+6< 15x-10\)
\(\Leftrightarrow\)\(8x-15x< -8-6-10\)
\(\Leftrightarrow\)\(-7x< -24\)
\(\Leftrightarrow\)\(x>\frac{24}{7}\)
Vậy bất phương trình có nghiệm là : \(x>\frac{24}{7}\)
2x+25+310<3x−242x+25+310<3x−24
⇔⇔4(2x+2)20+620<5(3x−2)204(2x+2)20+620<5(3x−2)20
⇒⇒8x+8+6<15x−108x+8+6<15x−10
⇔⇔8x−15x<−8−6−108x−15x<−8−6−10
⇔⇔−7x<−24−7x<−24
⇔⇔x>247x>247
Vậy bất phương trình có nghiệm là : x>247
Tick cho mình nhé !!.
\(BPT\Leftrightarrow1+\frac{1}{x+2}