K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2021

\(7\left(2x-4\right)>1-4x\)

\(\Leftrightarrow14x-28-1+4x>0\)

\(\Leftrightarrow x>\dfrac{29}{18}\)

19 tháng 10 2021

sao ko thay --1 thành> gải thích

2 tháng 6 2021

em                                                                                                                                                                                                            ko

biết

9 tháng 10 2021

\(\left\{{}\begin{matrix}\dfrac{xy}{4x+3y}=\dfrac{4}{7}\\\dfrac{xy}{2x+y}=\dfrac{4}{5}\end{matrix}\right.\)\(\left(đk:4x\ne-3y,-2x\ne y,xy\ne0\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4x+3y}{xy}=\dfrac{7}{4}\\\dfrac{2x+y}{xy}=\dfrac{5}{4}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4x+3y}{xy}=\dfrac{7}{4}\\\dfrac{4x+2y}{xy}=\dfrac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=-\dfrac{3}{4}\\\dfrac{xy}{2x+y}=\dfrac{4}{5}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{3}\\y=1\end{matrix}\right.\)

NV
28 tháng 2 2021

Do \(x^6-x^3+x^2-x+1=\left(x^3-\dfrac{1}{2}\right)^2+\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\) ; \(\forall x\) nên BPT tương đương:

\(\sqrt{13}-\sqrt{2x^2-2x+5}-\sqrt{2x^2-4x+4}\ge0\)

\(\Leftrightarrow\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}\le\sqrt{26}\) (1)

Ta có:

\(VT=\sqrt{\left(2x-1\right)^2+3^2}+\sqrt{\left(2-2x\right)^2+2^2}\ge\sqrt{\left(2x-1+2-2x\right)^2+\left(3+2\right)^2}=\sqrt{26}\) (2)

\(\Rightarrow\left(1\right);\left(2\right)\Rightarrow\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}=\sqrt{26}\)

Dấu "=" xảy ra khi và chỉ khi \(2\left(2x-1\right)=3\left(2-2x\right)\Leftrightarrow x=\dfrac{4}{5}\)

Vậy BPT có nghiệm duy nhất \(x=\dfrac{4}{5}\)

12 tháng 1 2020

\(\left\{{}\begin{matrix}5\left(x+2y\right)=4x-1\\2x+4=3\left(x-5y\right)-20\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x+10y=4x-1\\2x+4=3x-15y-20\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+10y=-1\left(1\right)\\x-15y=24\left(2\right)\end{matrix}\right.\)

Lấy (1)-(2): \(25y=-25\Leftrightarrow y=-1\) thay vào (1) \(\Leftrightarrow x=9\)

10 tháng 3 2022

\(\Delta'=\left(-2\right)^2-3.\left(-8\right)=4+24=28>0.\)

\(\Rightarrow\) Pt có 2 nghiệm phân biệt \(x_1;x_2.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{2+2\sqrt{7}}{3}.\\x_2=\dfrac{2-2\sqrt{7}}{3}.\end{matrix}\right.\)

26 tháng 12 2018

a)\(\left\{{}\begin{matrix}x=7-2y\\3\left(7-2y\right)-4y=1\end{matrix}\right.< =>\left\{{}\begin{matrix}x=7-2y\\21-6y-4y=1\end{matrix}\right.< =>\left\{{}\begin{matrix}x=7-2y\\20=10y\end{matrix}\right.< =>\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

Vậy ...

b)\(\left\{{}\begin{matrix}y=7-2x\\4x-3\left(7-2x\right)=-1\end{matrix}\right.< =>\left\{{}\begin{matrix}y=7-2x\\4x-21+6x=-1\end{matrix}\right.< =>\left\{{}\begin{matrix}y=7-2x\\10x=20\end{matrix}\right.< =>\left\{{}\begin{matrix}y=3\\x=2\end{matrix}\right.\)

27 tháng 12 2018

a, \(\left\{{}\begin{matrix}x+2y=7\left(1\right)\\3x-4y=1\left(2\right)\end{matrix}\right.\)
Nhân cả 2 vế pt (1) với 3 ta được hệ phương trình
\(\left\{{}\begin{matrix}3x+6y=21\left(3\right)\\3x-4y=1\left(4\right)\end{matrix}\right.\)
Trừ 2 vế pt (3) cho pt (4)
=>10y=20
\(\Leftrightarrow y=2\) thay vào (1) ta có: x+4=7\(\Leftrightarrow x=3\)
Vậy nghiệm của hpt (x;y)=(3;2)
b,\(\left\{{}\begin{matrix}2x+y=7\left(1\right)\\4x-3y=-1\left(2\right)\end{matrix}\right.\)
Nhân 2 vế pt (1) vs 2 ta được
4x+2y=14(3)
Trừ 2 vế pt(3) cho pt(2)ta có
5y=15
\(\Leftrightarrow\)y=3 thay vào (1)
=>2x+3=7\(\Leftrightarrow x=2\)
Vậy nghiệm của hpt (x;y)=(2;3)

NV
20 tháng 6 2021

Đặt \(\sqrt{x^2+1}=t>0\)

\(\Rightarrow\left(4x-1\right)t=2t^2-2x\)

\(\Leftrightarrow2t^2-\left(4x-1\right)t-2x=0\)

\(\Delta=\left(4x-1\right)^2+16x=\left(4x+1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{4x-1-\left(4x+1\right)}{4}=-\dfrac{1}{2}\left(loại\right)\\t=\dfrac{4x-1+4x+1}{4}=2x\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+1}=2x\) (\(x\ge0\))

\(\Leftrightarrow x^2+1=4x^2\)

\(\Rightarrow x=\dfrac{\sqrt{3}}{3}\)

NV
7 tháng 8 2021

ĐKXĐ: \(x\le\dfrac{1}{2}\)

\(4x^2+y^2+2x+y=2-4xy\)

\(\Leftrightarrow\left(4x^2+4xy+y^2\right)+2x+y-2=0\)

\(\Leftrightarrow\left(2x+y\right)^2+2x+y-2=0\)

\(\Rightarrow\left[{}\begin{matrix}2x+y=1\\2x+y=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}1-2x=y\\1-2x=y+3\end{matrix}\right.\)

Thế vào pt dưới:

\(\Rightarrow\left[{}\begin{matrix}8\sqrt{y}+y^2-9=0\\8\sqrt{y+3}+y^2-9=0\end{matrix}\right.\)

\(\Leftrightarrow...\)