Cho tam giác đều ABC.Từ C kẻ đường vuông góc với BC cắt AB kéo dài tại E. Từ A kẻ đường vuông góc với AB cắt BC kéo dài tại F. CMR tứ giác ACEF là hình thang cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác AEC ta có :
AEC + ABC + ECB = 180 độ
=> AEC + ABC = 90 độ
=> ACE + ACB = 90 độ
Mà tam giác ABC đều (gt)
=> ABC =ACB
=> AEC = ACE
=> Tam giác AEC cân tại A
=> AE = AC
Lại cm tương tự ta có :
=> Tam giác ACF cân tai C
=> AC = CF
Mà tam giác ABC đều
=> AB = AC = BC
=> AB = BC = AF= CF
=> A là trung điểm BE(1)
=> C là trung điểm BF(2)
Từ (1) và (2) => AC là đường trung bình của tam giác BEF
=> AC //EF
=> ACEF là hình thang
Mà AE = CF (cmt)
=> ACEF là hình thang cân (dpcm)
\(\Delta ABC\) đều => \(\widehat{A}=\widehat{B}=\widehat{C}=60^o\); \(AB=AC=BC\)
Xét \(\Delta ABF\) và \(\Delta CBE\) có:
- \(AB=BC\)
-\(\widehat{BAF}=\widehat{BCE}=90^o\)
- \(\widehat{B}\) chung
=> \(\Delta ABF=\Delta CBE\left(g-c-g\right)\)
=> \(BE=BF\)=> \(\Delta BEF\) cân tại B=> \(\widehat{E}=\widehat{F}\)(1)
Ta có:\(\Delta BEF\)cân có \(\widehat{B}=60^o\)=> \(\Delta BEF\) đều=> \(\widehat{F}=60^o\). Mà \(\widehat{BCA}=60^o\)=>\(\widehat{F}=\widehat{BCA}\)( đồng vị) => \(AC//EF=>ACFE\) là hình thang (2)
Từ (1) và (2)=> \(ACFE\)là hình thang cân.
a: EM=căn 10^2-6^2=8cm
b: góc BAC=180-2*40=100 độ
góc BAC>góc ABC=góc ACB
=>BC>AC=AB
c: Xét ΔMBE vuông tại E và ΔNCF vuông tại F có
BE=CF
góc MBE=góc NCF
=>ΔMBE=ΔNCF
=>EM=FN
a) Xét tứ giác KEDC có
\(\widehat{KEC}=\widehat{KDC}\left(=90^0\right)\)
\(\widehat{KEC}\) và \(\widehat{KDC}\) là hai góc cùng nhìn cạnh KC
Do đó: KEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Hello, kb ko?