Cho \(\Delta ABC\) vuông tại \(C\) có đường cao \(CH\). Gọi \(M\), \(N\) lần lượt là trung điểm của \(CH\), \(BH\). CMR: \(AM\perp CN\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Gọi G là giao điểm của AH và DE
Ta có: GA = GD = GH = GE (tính chất hình chữ nhật)
Suy ra tam giác GHD cân tại G
Suy ra tam giác NCE cân tại N ⇒ NC = NE (16)
Từ (13) và (16) suy ra: NC = NH hay N là trung điểm của CH.
Xét 2 tam giác vuôngΔBHM và ΔCKM có:
Góc M1 = M2 ( đối đỉnh)
BM = CM (gt)
⇒ ΔBHM = ΔCKM ( cạnh huyền góc nhọn)
⇒ BH = CK ( 2 cạnh tương ứng)
Vì góc H = M :
⇒ BH // CK ( so le trong)
a) Xét \(\Delta BMH,\Delta CMK\) có:
\(\widehat{BHM}=\widehat{CKM}\left(=90^{^O}\right)\)
\(BM=MC\) (M là trung điểm của BC)
\(\widehat{BMH}=\widehat{CMK}\)(đối đỉnh)
=> \(\Delta BMH=\Delta CMK\) (cạnh huyền - góc nhọn) (*)
=> \(\widehat{HBM}=\widehat{KCM}\) (2 góc tương ứng)
Mà thấy : 2 góc này ở vị trí so le trong
=> \(BH//CK\)
Từ (*) suy ra : \(BH=CK\)( 2 cạnh tương ứng)
b) Xét \(\Delta BKM,\Delta CHM\) có :
\(BM=MC\) (M là trung điểm của BC)
\(\widehat{BMK}=\widehat{CMH}\) (đối đỉnh)
\(HM=MK\) [suy ra từ (*)]
=> \(\Delta BKM=\Delta CHM\left(c.g.c\right)\) (**)
=> \(\widehat{KBM}=\widehat{HCM}\) (2 góc tương ứng)
Mà thấy : 2 góc này ở vị trí so le trong
=> \(BK//CH\left(đpcm\right)\)
Từ (**) suy ra : \(BK=CH\) (2 cạnh tương ứng)
c) Ta có : \(BK=CH\) (chứng minh trên -câub)
Lại có : \(\left\{{}\begin{matrix}CH=HF+FC\left(\text{F là trung điểm của CH}\right)\\BK=BE+EK\left(\text{E là trung điểm của BK}\right)\end{matrix}\right.\)
Suy ra : \(HF=FC=BE=EK\)
Xét \(\Delta HMF,\Delta KME\) có :
\(HF=EK\left(cmt\right)\)
\(\widehat{HMF}=\widehat{KME}\) (đối đỉnh)
\(HM=MK\) [từ (*)]
=> \(\Delta HMF=\Delta KME\left(c.g.c\right)\)
=> \(EM=FM\) (2 cạnh tương ứng)
=> M là trung điểm của EF
Do đó : E, M, F thẳng hàng
=> đpcm
à thanks mình xin lỗi nhé !
a, Xét tam giác HAC và tam giác ABC ta có
^AHC = ^BAC = 900
^C _ chung
Vậy tam giác HAC ~ tam giác ABC ( g.g ) (1)
\(\Rightarrow\frac{HA}{AB}=\frac{AC}{BC}\) ( tí số đồng dạng ) (3)
Xét tam giác HAB và tam giác ABC ta có :
^AHB = ^BAC = 900
^B _ chung
Vậy tam giác HAB ~ tam giác ABC ( g.g ) (2)
Từ (1) ; (2) suy ra : tam giác HAC ~ tam giác HAB
b, Từ (3) ta có : \(\frac{HA}{15}=\frac{20}{25}\)( BC = 25 cm theo Py ta go )
\(\Rightarrow HA=\frac{15.20}{25}=12\)cm
Lời giải:
a)
Xét tam giác $HDC$ có $M,N$ lần lượt là trung điểm $DH, DC$ nên $MN$ là đường trung bình ứng với cạnh $HC$ của tam giác $HDC$
$\Rightarrow MN\parallel HC\Rightarrow MN\parallel BC$
Mà $AH\perp BC$ nên $MN\perp AH$
b) Gọi $T$ là giao điểm $BD$ và $AM$
Vì $ABC$ là tam giác cân nên $\widehat{B}=\widehat{C}$
$\Rightarrow \triangle ABH\sim \triangle HCD$ (g.g)
$\Rightarrow \frac{AH}{BH}=\frac{HD}{CD}$
$\Leftrightarrow \frac{AH}{2BH}=\frac{HD}{2CD}$
$\Leftrightarrow \frac{AH}{BC}=\frac{HM}{CD}$
$\Leftrightarrow \frac{AH}{HM}=\frac{BC}{CD}$
Xét tam giác $AMH$ và $BDC$ có:
$\frac{AH}{HM}=\frac{BC}{CD}$ (cmt)
$\widehat{AHM}=\widehat{BCD}(=90^0-\widehat{HAC})$
$\Rightarrow \triangle AMH\sim \triangle BDC$ (c.g.c)
$\Rightarrow \widehat{MAH}=\widehat{DBC}$
$\Leftrightarrow \widehat{TAE}=\widehat{EBH}$
$\Rightarrow \widehat{ATE}=\widehat{EHB}=90^0$
$\Rightarrow AM\perp BD$
Bạn xem lại được không ạ? Chứ đề bài không sai đâu ạ
Mình vẫn vẽ được hình mà bạn