K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 10 2020

Hình vẽ:

Đường trung bình của tam giác, hình thang

AH
Akai Haruma
Giáo viên
1 tháng 10 2020

Lời giải:
a)

Xét tam giác $HDC$ có $M,N$ lần lượt là trung điểm $DH, DC$ nên $MN$ là đường trung bình ứng với cạnh $HC$ của tam giác $HDC$

$\Rightarrow MN\parallel HC\Rightarrow MN\parallel BC$

Mà $AH\perp BC$ nên $MN\perp AH$

b) Gọi $T$ là giao điểm $BD$ và $AM$

Vì $ABC$ là tam giác cân nên $\widehat{B}=\widehat{C}$

$\Rightarrow \triangle ABH\sim \triangle HCD$ (g.g)

$\Rightarrow \frac{AH}{BH}=\frac{HD}{CD}$

$\Leftrightarrow \frac{AH}{2BH}=\frac{HD}{2CD}$

$\Leftrightarrow \frac{AH}{BC}=\frac{HM}{CD}$

$\Leftrightarrow \frac{AH}{HM}=\frac{BC}{CD}$

Xét tam giác $AMH$ và $BDC$ có:

$\frac{AH}{HM}=\frac{BC}{CD}$ (cmt)

$\widehat{AHM}=\widehat{BCD}(=90^0-\widehat{HAC})$

$\Rightarrow \triangle AMH\sim \triangle BDC$ (c.g.c)

$\Rightarrow \widehat{MAH}=\widehat{DBC}$

$\Leftrightarrow \widehat{TAE}=\widehat{EBH}$

$\Rightarrow \widehat{ATE}=\widehat{EHB}=90^0$

$\Rightarrow AM\perp BD$

24 tháng 9 2015

A, TA CÓ: AH vuông góc với CB, tam giác ABC cân tại A=>AH là đường trung tuyến của ABC=>CH=CB

Xét tam giác CDB có MH // DB, CH=CB =>M trung điểm của CD (T/C đường tb của tam giác)

b, xét tam giác CDB có CM=MD, DN=NB=>MN là đường tb của tam giác CDB => MN // CB

MÀ AH vuông góc với CB,=>MN vuông góc với AH mà E thuộc MN=>ME vuông góc với AH

CÒN PHẦN C THÌ MK KO BIẾT. SORRY NHA 

 

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:
Không mất tổng quát, ta vẽ $D$ nằm giữa $B,H$

Xét tam giác vuông $MDC$:

$\widehat{CMD}=90^0-\widehat{C}$

Xét tam giác vuông $NBD$:

$\widehat{BND}=90^0-\widehat{B}$

Mà tam giác $ABC$ cân tại $A$ nên $\widehat{B}=\widehat{C}$

$\Rightarrow 90^0-\widehat{B}=90^0-\widehat{C}$

Hay $\widehat{BND}=\widehat{CMD}$

$\Leftrightarrow \widehat{MNA}=\widehat{AMN}$

$\Rightarrow \triangle AMN$ cân tại $A$

a: Xét tứ giác AHBD có

M là trung điểm chung của AB và HD

góc AHB=90 độ

=>AHBD là hình chữ nhật

Xét tứ giác AHCE có

N là trung điểm chung của AC và HE

góc AHC=90 độ

=>AHCE là hình chữ nhật

AE//CH

=>AE//BH

mà AD//BH

nên A,D,E thẳng hàng

mà DA=AE

nên A là trung điểm của DE

Xét tứ giác BDEC có

DE//BC

DE=BC

góc DBC=90 độ

=>BDEC là hình chữ nhật

b: Xét tứ giác ABHE có

AE//HB

AE=HB

=>ABHE là hình bình hành

=>AH cắt BE tại trung điểm của mỗi đường(1)

Xét tứ giác ADHC có

AD//HC

AD=HC

=>ADHC là hbh

=>AH cắt CD tại trung điểm của mỗi đường(2)

Từ (1), (2) suy ra BE cắt CD tại trung điểm của AH

c: Xét ΔHDE có

HA vừa là đường cao, vừa là trung tuyến

=>ΔHDE cân tại H

=>HD=HE

BDEC là hcn

=>BE=CD