Cho biết a=b+c và c=(bd/b-d).Chứng mnh a/b =c/d
(a/b là phân số (a,b thuộc Z))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ a + b = c + d suy ra d = a + b - c.
Vì tích ab là số liền sau của tích cd nên ab - cd = 1.
\(\Leftrightarrow\) ab - c.(a + b - c) = 1
\(\Leftrightarrow\)ab - ac - bc + c2 = 1
\(\Leftrightarrow\)a.( b - c) - c.(b - c) = 1
\(\Leftrightarrow\)(b - c).(a - c) = 1
\(\Rightarrow\) a - c = b -c (vì cùng bằng 1 hoặc -1) \(\Rightarrow\) a = b
Vậy suy ra điều phải chứng minh.
Lời giải:
Ta có các điều sau:
\(\left\{\begin{matrix} a+b\equiv 0\pmod k\\ c+d\equiv 0\pmod k\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a\equiv -b\pmod k\\ d\equiv-c\pmod k\end{matrix}\right.\)
Áp dụng tính chất nhân của mo- đun:
\(\Rightarrow ad\equiv (-b)(-d)=bd\pmod k\) . Suy ra $ad-bc$ chia hết cho $k$
Do đó ta có đpcm
Ta có:
\(a+b=c+d\)
\(\Rightarrow d=a+b-c\)
Vì \(ab\) là số liền sau của \(cd\) nên \(ab-cd=1\)
Mà \(\Rightarrow d=a+b-c\) nên ta có:
\(ab-cd=1\)
\(\Rightarrow ab-c\left(a+b-c\right)=1\)
\(\Rightarrow ab-ac-bc+c^2=1\)
\(\Rightarrow a.\left(b-c\right)-c.\left(b-c\right)=1\)
\(\Rightarrow\left(a-c\right)\left(b-c\right)=1\)
Vì \(a,b,c\in Z\) nên \(\left(a-c\right)\left(b-c\right)=1.1\) hoặc \(\left(a-c\right)\left(b-c\right)=\left(-1\right)\left(-1\right)\)
Do đó \(a-c=b-c\)
\(\Rightarrow a=b\)
Vậy a=b.
vào đây tham khảo nha http://olm.vn/hoi-dap/question/59155.html
Vì: a=b+c\(\Rightarrow\)b=a-c
Ta có: c=bd/b-d
\(\Rightarrow\)c/d=b/b-d
\(\Rightarrow\)c/d=a-c/b-d=c+a-c/ d+b-d= a/b
Vậy: a/b=c/d
chúc bạn học tốt