Tìm giá trị nhỏ nhất của biểu thức \(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\)biết a, b, c, d là số dương a+b+c+d=8 PLEASE HELP ME
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giỏi thì làm bài nÀY nèk
chứ mấy bác cứ đăng linh ta linh tinh lên online math
Linh ta linh tinh gì. ko biết làm thì tôi mới nhờ mọi người chứ
đây là câu cuối bài khảo sat trg tôi. ko làm được thì đừng phát biểu linh tinh
Đường link : Câu hỏi của Hà Lê - Toán lớp 9 - Học toán với OnlineMath
Ta có : a4 + b4 \(\ge\)2a2b2 ; b4 + c4 \(\ge\)2b2c2 ; a4 + c4 \(\ge\)2a2c2
\(\Rightarrow\)a4 + b4 + c4 \(\ge\)a2b2 + b2c2 + a2c2 ( 1 )
Lại có : a2b2 + b2c2 \(\ge\)2b2ac ; b2c2 + a2c2 \(\ge\)2c2ab ; a2b2 + a2c2 \(\ge\)2a2bc
\(\Rightarrow\)a2b2 + b2c2 + a2c2 \(\ge\)abc ( a + b + c ) ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)a4 + b4 + c4 \(\ge\) abc ( a + b + c )
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1
Tương tự , b4 + c4 + d4 \(\ge\)bcd ( b + c + d ) ; a4 + b4 + d4 \(\ge\)abd ( a + b + d ) ; c4 + d4 + a4 \(\ge\)acd ( a + c + d )
\(\frac{1}{a^4+b^4+c^4+abcd}\le\frac{1}{abc\left(a+b+c\right)+abcd}=\frac{abcd}{abc\left(a+b+c+d\right)}=\frac{d}{a+b+c+d}\)
\(\frac{1}{b^4+c^4+d^4+abcd}\le\frac{a}{a+b+c+d}\); \(\frac{1}{a^4+b^4+d^4+abcd}\le\frac{c}{a+b+c+d}\)
\(\frac{1}{c^4+d^4+a^4+abcd}\le\frac{b}{a+b+c+d}\)
Cộng từng vế theo vế , ta được :
A \(\le\)1 ( đặt A = biểu thức ấy nhé )
Vậy GTLN A = 1 \(\Leftrightarrow\)a = b = c = d = 1
1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)
Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu a + b + c + d = 0
=> a + b = -(c + d)
=> b + c = (-a + d)
=> c + d = -(a + b)
=> d + a = (-b + c)
Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4
Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)
Khi đó M = 1 + 1 + 1 + 1 = 4
2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)
Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)
b) 72x + 72x + 3 = 344
=> 72x + 72x.73 = 344
=> 72x.(1 + 73) = 344
=> 72x = 1
=> 72x = 70
=> 2x = 0 => x = 0
c) Ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)
=> 2x + 2 = 14 => x = 6 ;
2y - 4 = 6 => y = 5 ;
6 + 5 + z = 17 => z = 6
Vậy x = 6 ; y = 5 ; z = 6
3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau)
=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;
Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0
Vậy c = 0 hoặc b = 0
c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau)
=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)
Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)
Vậy P = 8
2. b) \(7^{2x}+7^{2x+3}=344\)
\(7^{2x}\cdot\left(1+7^3\right)=344\)
\(7^{2x}\cdot\left(1+343\right)=344\)
\(7^{2x}\cdot344=344\)
\(7^{2x}=1\)
\(7^{2x}=7^0\)
\(2x=0\)
\(x=0\)
\(\frac{1}{a}-1=\frac{a+b+c+d}{a}-1=\frac{b+c+d}{a}\ge\frac{3\sqrt[3]{bcd}}{a}\)
tương tự với 3 cái còn lại rồi nhân vô
Tình yêu sao khác thường
Đôi lúc ta thật kiên cường
Nhiều người trách mình điên cuồng
Cứ lao theo dù không lối ra
Ta có:
\(S=\frac{a-d}{b+d}+\frac{d-b}{c+b}+\frac{b-c}{a+c}+\frac{c-a}{d+a}\)
\(=\left(\frac{a-d}{b+d}+1\right)+\left(\frac{d-b}{c+b}+1\right)+\left(\frac{b-c}{a+c}+1\right)+\left(\frac{c-a}{d+a}+1\right)-4\)
\(=\frac{a+b}{b+d}+\frac{d+c}{c+b}+\frac{b+a}{a+c}+\frac{c+d}{d+a}-4\)
\(=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{c+b}+\frac{1}{d+a}\right)-4\)
\(\ge\frac{4\left(a+b\right)}{a+b+c+d}+\frac{4\left(c+d\right)}{a+b+c+d}-4\) (Cauchy Schwars)
\(=\frac{4\left(a+b+c+d\right)}{a+b+c+d}-4=4-4=0\)
Dấu "=" xảy ra khi: a = b = c = d
Vậy Min(S) = 0 khi a = b = c = d
vì a b c d dương \(\Rightarrow\)1/a 1/b 4/c 16/d dương
\(\Rightarrow\frac{1}{a}+\frac{1}{b}>=\frac{4}{a+b}=\frac{2^2}{a+b}\)(bdt am-gm) dấu = xảy ra khi a=b
\(\frac{4}{c}+\frac{16}{d}=\frac{2^2}{c}+\frac{4^2}{d}>=\frac{\left(2+4\right)^2}{c+d}=\frac{6^2}{c+d}\)(bđt am-gm) dấu = xảy ra khi \(\frac{2}{c}=\frac{4}{d}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}>=\frac{2^2}{a+b}+\frac{6^2}{c+d}>=\frac{\left(2+6\right)^2}{a+b+c+d}=\frac{8^2}{8}=8\)
dấu = xảy ra khi \(\frac{2}{a+b}=\frac{6}{c+d}\)
vậy min của \(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\)là 8 tại \(a=b;\frac{2}{c}=\frac{4}{d};\frac{2}{a+b}=\frac{6}{c+d}\)
Bạn Đinh Quang Hiệp, bn có thể giải thích rõ hơn về phần dấu = xảy ra khi a=b ko? 😍😍😍