Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường link : Câu hỏi của Hà Lê - Toán lớp 9 - Học toán với OnlineMath
Ta có : a4 + b4 \(\ge\)2a2b2 ; b4 + c4 \(\ge\)2b2c2 ; a4 + c4 \(\ge\)2a2c2
\(\Rightarrow\)a4 + b4 + c4 \(\ge\)a2b2 + b2c2 + a2c2 ( 1 )
Lại có : a2b2 + b2c2 \(\ge\)2b2ac ; b2c2 + a2c2 \(\ge\)2c2ab ; a2b2 + a2c2 \(\ge\)2a2bc
\(\Rightarrow\)a2b2 + b2c2 + a2c2 \(\ge\)abc ( a + b + c ) ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)a4 + b4 + c4 \(\ge\) abc ( a + b + c )
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1
Tương tự , b4 + c4 + d4 \(\ge\)bcd ( b + c + d ) ; a4 + b4 + d4 \(\ge\)abd ( a + b + d ) ; c4 + d4 + a4 \(\ge\)acd ( a + c + d )
\(\frac{1}{a^4+b^4+c^4+abcd}\le\frac{1}{abc\left(a+b+c\right)+abcd}=\frac{abcd}{abc\left(a+b+c+d\right)}=\frac{d}{a+b+c+d}\)
\(\frac{1}{b^4+c^4+d^4+abcd}\le\frac{a}{a+b+c+d}\); \(\frac{1}{a^4+b^4+d^4+abcd}\le\frac{c}{a+b+c+d}\)
\(\frac{1}{c^4+d^4+a^4+abcd}\le\frac{b}{a+b+c+d}\)
Cộng từng vế theo vế , ta được :
A \(\le\)1 ( đặt A = biểu thức ấy nhé )
Vậy GTLN A = 1 \(\Leftrightarrow\)a = b = c = d = 1
vì a,b,c dương => a+b khác 0
b+c khác 0
a+c khác 0
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(E=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}\)
\(=\frac{1}{2}\)
vậy E = \(\frac{1}{2}\)
Áp dụng BĐT AM-GM ta có: \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2\left(b+c\right)}{4\left(b+c\right)}}=a\)
Tương tự ta có: \(\frac{b^2}{c+a}+\frac{c+a}{4}\ge b;\) \(\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)
Cộng 3 BĐT trên theo vế thì được:
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{a+b+c}{2}\ge a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c\ge\frac{3\left(a+b+c\right)}{2}\)
\(\Leftrightarrow\frac{a\left(a+b+c\right)}{b+c}+\frac{b\left(a+b+c\right)}{c+a}+\frac{c\left(a+b+c\right)}{a+b}\ge\frac{3\left(a+b+c\right)}{2}\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)\(\Rightarrow E\ge\frac{3}{2}\).
Vậy \(Min\) \(E=\frac{3}{2}\). Đẳng thức xảy ra <=> a=b=c.
Dat \(\hept{\begin{cases}A=\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\\B=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\end{cases}}\)
Ta co:\(A=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge2+2+2=6\left(1\right)\)
\(B=\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}-3\)
\(=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\ge\left(a+b+c\right).\frac{9}{2\left(a+b+c\right)}-3=\frac{3}{2}\left(2\right)\)
Cong ve voi ve cua (1) va (2) ta duoc:
\(P=A+B\ge6+\frac{3}{2}=\frac{15}{2}\)
Dau '=' xay ra khi \(a=b=c\)
Chứng minh ĐBT:\(\frac{b}{a}+\frac{a}{b}\ge2\left(a,b\ne0\right)\)(Dấu "="\(\Leftrightarrow a=b=1\))
Ta có: \(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\frac{a^2+b^2}{ab}\ge2\)
\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}\ge2\left(đpcm\right)\)
Vậy \(\frac{b+c}{a}+\frac{a}{b+c}\ge2\)
\(\frac{a+c}{b}+\frac{b}{c+a}\ge2\)
\(\frac{a+b}{c}+\frac{c}{b+a}\ge2\)
\(\Rightarrow P\ge6\)
Vậy \(P_{min}=6\Leftrightarrow\hept{\begin{cases}a=b+c\\b=a+c\\c=a+b\end{cases}}\)
\(B=\frac{2001}{2}\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right].\left[\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right]\)
\(B=\frac{2001}{2}\left[\frac{a+b}{a+b}+\frac{a+b}{b+c}+\frac{a+b}{c+a}+\frac{b+c}{a+b}+\frac{b+c}{b+c}+\frac{b+c}{c+a}+\frac{c+a}{a+b}+\frac{c+a}{b+c}+\frac{c+a}{c+a}\right]\)
\(B=\frac{2001}{2}\left[1+\left(\frac{a+b}{b+c}+\frac{b+c}{a+b}\right)+\left(\frac{a+b}{c+a}+\frac{c+a}{a+b}\right)+1+\left(\frac{b+c}{c+a}+\frac{c+a}{b+c}\right)+1\right]\)
Dễ dàng chứng minh được \(\frac{x}{y}+\frac{y}{x}\ge2\). Suy ra:
\(\left(\frac{a+b}{b+c}+\frac{b+c}{a+b}\right)\ge2\); \(\left(\frac{a+b}{c+a}+\frac{c+a}{a+b}\right)\ge2\); \(\left(\frac{b+c}{c+a}+\frac{c+a}{b+c}\right)\ge2\)
=> \(B\ge\frac{2001}{2}.\left(3+2+2+2\right)=\frac{18009}{2}\)
Dấu = khi và chỉ khi \(\frac{a+b}{b+c}=\frac{b+c}{a+b}=\frac{c+a}{b+c}\Rightarrow a=b=c\)
vậy Min B = 18009/2
vì a b c d dương \(\Rightarrow\)1/a 1/b 4/c 16/d dương
\(\Rightarrow\frac{1}{a}+\frac{1}{b}>=\frac{4}{a+b}=\frac{2^2}{a+b}\)(bdt am-gm) dấu = xảy ra khi a=b
\(\frac{4}{c}+\frac{16}{d}=\frac{2^2}{c}+\frac{4^2}{d}>=\frac{\left(2+4\right)^2}{c+d}=\frac{6^2}{c+d}\)(bđt am-gm) dấu = xảy ra khi \(\frac{2}{c}=\frac{4}{d}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}>=\frac{2^2}{a+b}+\frac{6^2}{c+d}>=\frac{\left(2+6\right)^2}{a+b+c+d}=\frac{8^2}{8}=8\)
dấu = xảy ra khi \(\frac{2}{a+b}=\frac{6}{c+d}\)
vậy min của \(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\)là 8 tại \(a=b;\frac{2}{c}=\frac{4}{d};\frac{2}{a+b}=\frac{6}{c+d}\)
Bạn Đinh Quang Hiệp, bn có thể giải thích rõ hơn về phần dấu = xảy ra khi a=b ko? 😍😍😍