Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3a^2+4ab+b^2=3a^2+3ab+ab+b^2=3a\left(a+b\right)+b\left(a+b\right)=\left(3a+b\right)\left(a+b\right)\)
xong AM -GM
Ta có:
\(\frac{a+1}{1+b^2}=a+1-\frac{\left(a+1\right)b^2}{1+b^2}\ge a+1-\frac{\left(a+1\right)b^2}{2b}=a+1-\frac{ab+b}{2}\left(1\right)\)
Tương tụ ta có:
\(\hept{\begin{cases}\frac{\left(b+1\right)}{1+c^2}\ge b+1-\frac{bc+c}{2}\left(2\right)\\\frac{\left(c+1\right)}{1+a^2}\ge c+1-\frac{ca+a}{2}\left(3\right)\end{cases}}\)
Từ (1), (2), (3) ta có:
\(M\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)
\(=3+3-\frac{ab+bc+ca+3}{2}\)
\(\ge\frac{9}{2}-\frac{\left(a+b+c\right)^2}{6}=3\)
giỏi thì làm bài nÀY nèk
chứ mấy bác cứ đăng linh ta linh tinh lên online math
Linh ta linh tinh gì. ko biết làm thì tôi mới nhờ mọi người chứ
đây là câu cuối bài khảo sat trg tôi. ko làm được thì đừng phát biểu linh tinh
\(\frac{a^2}{1+b}+\frac{1+b}{4}\ge a\)
\(\frac{b^2}{1+c}+\frac{1+c}{4}\ge b\)
\(\frac{c^2}{1+a}+\frac{1+a}{4}\ge c\)
=>\(A\ge a+b+c-\frac{1}{4}\left(3+a+b+c\right)=\frac{3}{4}\left(a+b+c-1\right)\ge\frac{3}{4}\left(3\sqrt[3]{abc}-1\right)=\frac{3}{2}\)
A min = 3/2 khi x= y =z =1