K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2018

a)vì ABC là tam giác vuông tại A

và AH vuông góc vs BC,dồng thời là đường cao,là đg trung tuyến trong tam giác

nên H=90độ

tam giác AHC vuông tại H 

14 tháng 3 2020

khó quá mà

cho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK...
Đọc tiếp

cho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DC

1

a: góc BAK+góc CAK=90 độ

góc BKA+góc HAK=90 độ

mà góc CAK=góc HAK

nên góc BAK=góc BKA

b: XétΔAEK vuông tại E và ΔKHA vuông tại H có

AK chung

góc EAK=góc HKA

=>ΔAEK=ΔKHA

c: Xét ΔKAB có

KE,AH là đường cao

KE cắt AH tạiI

=>BI vuông góc AK

mà ΔBAK cân tại B

nên BI là phân giác của góc KBA

12 tháng 4 2023

a, tam giác vuông CHF=CHE (c.g.c)  => CF=CE => Tam giác CEF cân tại C

gọi O là giao điểm của Ak và BF

tam giác vuông ABF=KBF ( cạnh huyền góc nhọn ) => BA=BK 

BA=BK; BO chung; ABO=KBO ( BF phân giác ) => tam giác ABO=KBO (c.g.c)=> AOB=KOB ở vị trí kề bù AOB+KOB=180

=> AOB=KOB=90=> BF vuông AK

=> AK//HC ( cùng vuông BF)

b, tam giác vuông ABF=KBF => AF=FK

cạnh huyền FC  >   FK  => FC    >   FA

c, gọi D là giao điểm AB;CH

tam giác BDC có BH ; AC là 2 đường cao cắt nhau tạo F

mà FK vuông BC nên DK là đường cao thứ 3 trong tam giác này

=> Ba đường thẳng CH, FK,AB đồng quy

13 tháng 3 2016

Bạn vẽ hình ra đã rồi nhìn lời giải nhá

a) TG' ABC vuông cân tại A -> g' ABC = g' ACB = 45 và AB = AC

    TG' ABH vuông tại H -> g' ABH = 90 - BAH (1)

    Có g' CAH = 90 - BAH ( TG' ABC vuông tại A ) (2) 

 Từ (1) và (2) -> g' ABH = g' CAH 

Xét TG' AHB và TG' AKC có

      g' AHB = g' AKC ( = 90 )  

         AB = AC  ( gt )

       g' HAB = g' KAC ( cmt )

 -> TG' AHB = TG' AKC ( ch - gn )

-> BH = Ak

      

    

12 tháng 4 2023

a, tam giác vuông CHF=CHE (c.g.c)  => CF=CE => Tam giác CEF cân tại C

gọi O là giao điểm của Ak và BF

tam giác vuông ABF=KBF ( cạnh huyền góc nhọn ) => BA=BK 

BA=BK; BO chung; ABO=KBO ( BF phân giác ) => tam giác ABO=KBO (c.g.c)=> AOB=KOB ở vị trí kề bù AOB+KOB=180

=> AOB=KOB=90=> BF vuông AK

=> AK//HC ( cùng vuông BF)

b, tam giác vuông ABF=KBF => AF=FK

cạnh huyền FC  >   FK  => FC    >   FA

c, gọi D là giao điểm AB;CH

tam giác BDC có BH ; AC là 2 đường cao cắt nhau tạo F

mà FK vuông BC nên DK là đường cao thứ 3 trong tam giác này

=> Ba đường thẳng CH, FK,AB đồng quy

2 tháng 5 2021

Hình tự vẽ nha bạn

a) Xét \(\Delta AHB\)và \(\Delta AKC\)có:

     \(\hept{\begin{cases}\widehat{A}:chung\\AB=AC\left(gt\right)\\\widehat{AHB}=\widehat{AKC}\left(gt\right)\end{cases}}\)

\(\Rightarrow\Delta AHB=\Delta AKC\left(ch-gn\right)\)

=>AH=AK ( 2 cạnh tương ứng) -đpcm

b) Xét \(\Delta AKI\)và \(\Delta AHI\)có:

 \(\hept{\begin{cases}AK=AH\\\widehat{AKI}=\widehat{AHI}\\AI:chung\end{cases}}\)

\(\Rightarrow\Delta AKI=\Delta AHI\left(ch-cgv\right)\)

\(\Rightarrow\widehat{IAK}=\widehat{IAH}\)( 2 góc tương ứng)

=> AI là ti phân giác góc KAH

Xét \(\Delta KAH\)cân tại A ( do AH=AK ) có AI là tia phân giác ứng cạnh KH

=> AI đồng thời là đường trung trực của cạnh KH (t/c) -đpcm

c) Kẻ CM \(\perp\)BE

Xét tứ giác BKCM có:

   \(\hept{\begin{cases}\widehat{CKB}=90^0\\\widehat{KBM}=90^0\\\widehat{BMC}=90^0\end{cases}}\)

=> tứ giác BKCM là hình chữ nhật (dấu hiệu nhận biết)

=> BK=CM (t/c) (1)

Dễ dàng chứng minh đc: BK=CH (2)

Từ (1) và (2) có : CM=CH

Xét \(\Delta BHC\)và \(\Delta BMC\)có:

\(\hept{\begin{cases}CH=CM\\\widehat{BHC}=\widehat{BMC}\\CB:chung\end{cases}}\)

=> \(\Delta BHC=BMC\left(ch-cgv\right)\)

=> \(\widehat{CBH}=\widehat{CBM}\)(2 góc tương ứng)

=> BC là tia phân giác góc HBM

hay BC là tia phân giác HBE -đpcm

Chúc bạn học tốt!

2 tháng 5 2021

d) Xét tam giác CME vuông tại M có CE là cạnh huyền

=>CE>CM (trong tam giác vuông cạnh huyền là cạnh lớn nhất)

mà CH=CM do \(\Delta CBH=\Delta CBM\)

=>CE>CH

19 tháng 4 2022

a, tam giác ABC cân tại A (gt)

=> AB = AC (Đn)

có M;N lần lượt là trung điểm của AC;AB (gt) => AM = MC = 1/2AC và AN = BN = 1/2BC (tc)

=> AN = AM = BN = CM 

xét tam giác NBC và tam giác MCB có : BC chung

^ABC = ^ACB do tam giác ABC cân tại A (Gt)

=> tam giác NBC = tam giác MCB (c-g-c)                 (1)

b, (1) => ^KBC = ^KCB (đn)

=> tam giác KBC cân tại K (dh)

c, có tam giác ABC cân tại A (gt)  => ^ABC = (180 - ^BAC) : 2 (tc)

có AM = AN (câu a) => tam giác AMN cân tại A (đn) => ^ANM = (180 - ^BAC) : 2 (tc)

=> ^ABC = ^ANM mà 2 góc này đồng vị

=> MN // BC (đl)

a: Xét ΔAKB và ΔAKC có

AK chung

KB=KC

AB=AC
=>ΔAKB=ΔAKC

=>góc AKB=góc AKC=180/2=90 độ

=>AK vuông góc BC

b: AK vuông góc BC

CE vuông góc CB

=>AK//CE
Xét ΔCEB vuông tại C có góc B=45 độ

nên ΔCEB vuông cân tại C

=>CE=CB

c: AK=1/2CE(do AK là đường trung bình của ΔCEB)