K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2023

a, tam giác vuông CHF=CHE (c.g.c)  => CF=CE => Tam giác CEF cân tại C

gọi O là giao điểm của Ak và BF

tam giác vuông ABF=KBF ( cạnh huyền góc nhọn ) => BA=BK 

BA=BK; BO chung; ABO=KBO ( BF phân giác ) => tam giác ABO=KBO (c.g.c)=> AOB=KOB ở vị trí kề bù AOB+KOB=180

=> AOB=KOB=90=> BF vuông AK

=> AK//HC ( cùng vuông BF)

b, tam giác vuông ABF=KBF => AF=FK

cạnh huyền FC  >   FK  => FC    >   FA

c, gọi D là giao điểm AB;CH

tam giác BDC có BH ; AC là 2 đường cao cắt nhau tạo F

mà FK vuông BC nên DK là đường cao thứ 3 trong tam giác này

=> Ba đường thẳng CH, FK,AB đồng quy

12 tháng 4 2023

a, tam giác vuông CHF=CHE (c.g.c)  => CF=CE => Tam giác CEF cân tại C

gọi O là giao điểm của Ak và BF

tam giác vuông ABF=KBF ( cạnh huyền góc nhọn ) => BA=BK 

BA=BK; BO chung; ABO=KBO ( BF phân giác ) => tam giác ABO=KBO (c.g.c)=> AOB=KOB ở vị trí kề bù AOB+KOB=180

=> AOB=KOB=90=> BF vuông AK

=> AK//HC ( cùng vuông BF)

b, tam giác vuông ABF=KBF => AF=FK

cạnh huyền FC  >   FK  => FC    >   FA

c, gọi D là giao điểm AB;CH

tam giác BDC có BH ; AC là 2 đường cao cắt nhau tạo F

mà FK vuông BC nên DK là đường cao thứ 3 trong tam giác này

=> Ba đường thẳng CH, FK,AB đồng quy

a: Xét ΔCEF có

CH vừa là đường cao, vừa là trung tuyến

=>ΔCEF cân tại C

Xét ΔBAF vuông tại A và ΔBFK vuông tại K co

BF chung

góc ABF=góc KBF

=>ΔBAF=ΔBFK

=>BA=BK

b: BA=BK

FA=FK

=>BF là trung trực của AK

=>BF vuông góc AK

=>AK//CH

c: Gọi M là giao của CH với AB

Xét ΔBMC có

BH,CA là đường cao

BH cắt CA tại F

=>Flà trực tâm

=>MF vuông góc BC

=>CH,FK,AB đồng quy

7 tháng 4 2017

Bạn có thể giúp mình làm câu a và b đc ko

28 tháng 4 2017

giải phương trình

x^2-3x+7/x^2-4x+7-x^2-5x+7/x^2-6x+7=-1/4

loading...  loading...  

1:Xét ΔABE và ΔFBE có 

BA=BF

\(\widehat{ABE}=\widehat{FBE}\)

BE chung

Do đó: ΔABE=ΔFBE

2: Ta có: ΔABE=ΔFBE

nên \(\widehat{BAE}=\widehat{BFE}=90^0\)

hay FE\(\perp\)BC