\(\frac{x+3}{-4}=\frac{-9}{x+3}\)
Cần gấp ạ !! Mong mọi người giúp đỡ!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhân chéo là đc:
3(x+2)=-4(x-5)
3x+6=-4x+20
3x+4x=20-6
7x =14
x =2
Vậy x=2
= 10/3.x+ 67/4=-53/4
10/3.x=-53/4-67/4
10/3.x=-30
x=-30:10/3
x=-9
\(-52+\frac{2}{3}x=-46\)
\(\frac{2}{3}x=-46+52\)
\(\frac{2}{3}x=6\)
\(x=6:\frac{2}{3}\)
\(x=9\)
b) \(\left(2,4.x-36\right)\div1\frac{5}{7}=-1\)
\(\left(2,4.x-36\right)=-1.\frac{12}{7}\)
\(2,4.x-36=-\frac{12}{7}\)
\(2,4.x=-\frac{12}{7}+36\)
\(2,4.x=\frac{240}{7}\)
\(x=\frac{240}{7}\div2,4\)
\(x=\frac{100}{7}\)
\(ĐKXĐ:x\ne\pm3\)
\(pt\Leftrightarrow\frac{\left(x+3\right)^2-\left(x-3\right)^2}{x^2-9}=\frac{17}{x^2-9}\)
\(\Leftrightarrow\left(x+3\right)^2-\left(x-3\right)^2=17\)
Tự dừng bấm Gửi tl
\(\Leftrightarrow x^2+6x+9-x^2+6x-9=17\)
\(\Leftrightarrow12x=17\Leftrightarrow x=\frac{17}{12}\)
\(4\left(x+1\right)^2=\sqrt{2\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow16\left(x+1\right)^4=2\left(x^4+x^2+1\right)\)
\(\Leftrightarrow\left(x^2+3x+1\right)\left(7x^2+11x+7\right)=0\)
\(\sqrt{\frac{x+56}{16}+\sqrt{x-8}}=\frac{x}{8}\)
\(\Leftrightarrow2\sqrt{x+56+16\sqrt{x-8}}=x\)
\(\Leftrightarrow2\sqrt{\left(\sqrt{x-8}+8\right)^2}=x\)
\(\Leftrightarrow2\sqrt{x-8}+16=x\)
\(\Leftrightarrow x=24\)
a) Với \(x\ge0\)và \(x\ne1\)ta có:
\(P=\frac{10\sqrt{x}}{x+3\sqrt{x}-4}-\frac{2\sqrt{x}-3}{\sqrt{x}+4}+\frac{\sqrt{x}+1}{1-\sqrt{x}}\)
\(=\frac{10\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{2\sqrt{x}-3}{\sqrt{x}+4}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\frac{10\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{10\sqrt{x}-\left(2\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{10\sqrt{x}-\left(2x-5\sqrt{x}+3\right)-\left(x+5\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{10\sqrt{x}-2x+5\sqrt{x}-3-x-5\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{-3x+10\sqrt{x}-7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{-\left(3x-10\sqrt{x}+7\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{-\left(\sqrt{x}-1\right)\left(3\sqrt{x}-7\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{-3\sqrt{x}+7}{\sqrt{x}+4}\)
b) \(P=\frac{-3\sqrt{x}+7}{\sqrt{x}+4}=\frac{-3\sqrt{x}-12+19}{\sqrt{x}+4}=\frac{-3\left(\sqrt{x}+4\right)+19}{\sqrt{x}+4}=-3+\frac{19}{\sqrt{x}+4}\)
Vì \(x\ge0\); \(x\ne1\)\(\Rightarrow\sqrt{x}+4\ge4\)
\(\Rightarrow\frac{19}{\sqrt{x}+4}\le\frac{19}{4}\)\(\Rightarrow P\le-3+\frac{19}{4}=\frac{7}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow x=0\)( thỏa mãn )
Vậy \(maxP=\frac{7}{4}\)\(\Leftrightarrow x=0\)
\(\frac{1}{2}x-\frac{1}{4}=\frac{-1}{2}\)
\(\frac{1}{2}x=\frac{-1}{2}+\frac{1}{4}\)
\(\frac{1}{2}x=\frac{-2+1}{4}\)
\(\frac{1}{2}x=\frac{-1}{4}\)
\(x=\frac{-1}{4}:\frac{1}{2}\)
\(x=\frac{-1}{4}.2\)
\(x=\frac{-1}{2}\)
Vậy .....................
\(\frac{1}{2}x-\frac{1}{4}=-\frac{1}{2}\)
\(\frac{1}{2}x=-\frac{1}{2}+\frac{1}{4}\)
\(\frac{1}{2}x=-\frac{2}{4}+\frac{1}{4}\)
\(\frac{1}{2}x=-\frac{1}{4}\)
\(x=-\frac{1}{4}:\frac{1}{2}\)
\(x=-\frac{1}{4}\cdot2\)
\(x=-\frac{1}{2}\)
Vậy .....
\(\frac{x+3}{-4}=-\frac{9}{x+3}\)
\(\Leftrightarrow\left(x+3\right)\left(x+3\right)=-4\cdot\left(-9\right)\)
\(\Leftrightarrow\left(x+3\right)^2=36\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+3\right)^2=6^2\\\left(x+3\right)^2=\left(-6\right)^2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=6\\x+3=-6\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-9\end{cases}}\)
Vậy ....
quy đồng
\(\left(x+3\right)^2=36\)
\(\left(x+3\right)^2-6^2=0\)
áp dụng định lí " \(a^2-b^2=\left(a+b\right)\left(a-b\right)\) ta được
\(\left(x+3-6\right)\left(x+3+6\right)=0\)
\(x=3,x=-9\)