Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{3}{x-5}=\frac{-4}{x+2}\)(ĐKXĐ: \(x\ne5;x\ne-2\))
\(\Rightarrow3\left(x+2\right)=-4\left(x-5\right)\)
\(\Leftrightarrow3x+6=-4x+20\)
\(\Leftrightarrow7x=14\)
\(\Leftrightarrow x=2\)(thỏa mãn ĐKXĐ)
b) \(2,4x-36=-\frac{7}{12}\)
\(\Leftrightarrow2,4x=\frac{425}{12}\)
\(\Leftrightarrow x=\frac{2125}{144}\)
c) \(\left(\frac{19}{5}-2x\right).\frac{4}{3}=\frac{40}{7}\)
\(\Leftrightarrow\frac{19}{5}-2x=\frac{30}{7}\)
\(\Leftrightarrow2x=-\frac{17}{35}\)
\(\Leftrightarrow x=-\frac{17}{70}\)
Bài 2
a. \(-1\frac{2}{3}-|2x-1|:\frac{3}{5}=-2\)
\(|2x-1|:\frac{3}{5}=\frac{5}{3}-2\)
\(|2x-1|:\frac{3}{5}=-\frac{1}{3}\)
\(|2x-1|=-\frac{1}{5}\)
Vì giá trị tuyệt đối luôn \(\ge0\)với mọi x
mà \(-\frac{1}{5}< 0\)
=> \(x\in\varnothing\)
g) \(\left(x+\frac{1}{2}\right)\left(\frac{2}{3}-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=\frac{1}{3}\end{cases}}\)
Vây \(x\in\left\{\frac{-1}{2};\frac{1}{3}\right\}\)
Giải:
a) \(\frac{1}{5}-\frac{2}{3}+2x=\frac{1}{2}\)
\(\Leftrightarrow2x=\frac{1}{2}-\left(\frac{1}{5}-\frac{2}{3}\right)\)
\(\Leftrightarrow2x=\frac{1}{2}-\frac{-7}{15}\)
\(\Leftrightarrow2x=\frac{11}{15}\)
\(\Leftrightarrow x=\frac{11}{15}:2\)
\(\Leftrightarrow x=\frac{11}{30}\)
b) \(4\left(\frac{1}{3}-3\right)+\frac{1}{2}=\frac{5}{6}+x\)
\(\Leftrightarrow\frac{-61}{6}=\frac{5}{6}+x\)
\(\Leftrightarrow x=\frac{-61}{6}-\frac{5}{6}\)
\(\Leftrightarrow x=\frac{-66}{6}=-11\)
a) (x + 1/2) . (2/3 − 2x) = 0
\(\Rightarrow\left[\begin{array}{nghiempt}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\2x=\frac{2}{3}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=\frac{1}{3}\end{array}\right.\)
b) \(\left(x.6\frac{2}{7}+\frac{3}{7}\right).2\frac{1}{5}-\frac{3}{7}=-2\)
\(\Rightarrow\left(x.\frac{44}{7}+\frac{3}{7}\right).\frac{11}{5}=-2+\frac{3}{7}\)
\(\Rightarrow\left(x.\frac{44}{7}+\frac{3}{7}\right).\frac{11}{5}=-\frac{11}{7}\)
\(\Rightarrow x.\frac{44}{7}+\frac{3}{7}=-\frac{11}{7}:\frac{11}{5}=-\frac{11}{7}.\frac{5}{11}\)
\(\Rightarrow x.\frac{44}{7}+\frac{3}{7}=-\frac{5}{7}\)
\(\Rightarrow x.\frac{44}{7}=-\frac{5}{7}-\frac{3}{7}\)
\(\Rightarrow x.\frac{44}{7}=-\frac{8}{7}\)
\(\Rightarrow x=-\frac{8}{7}:\frac{44}{7}=-\frac{8}{7}.\frac{7}{44}\)
\(\Rightarrow x=-\frac{2}{11}\)
c) \(x.3\frac{1}{4}+\left(-\frac{7}{6}\right).x-1\frac{2}{3}=\frac{5}{12}\)
\(\Rightarrow x\left(3\frac{1}{4}-\frac{7}{6}\right)=\frac{5}{12}+\frac{5}{3}\)
\(\Rightarrow x\left(\frac{13}{4}-\frac{7}{6}\right)=\frac{25}{12}\)
\(\Rightarrow x.\frac{25}{12}=\frac{25}{12}\)
\(\Rightarrow x=\frac{25}{12}:\frac{25}{12}\)
\(\Rightarrow x=1\)
d) \(5\frac{8}{17}:x+\left(-\frac{4}{17}\right):x+3\frac{1}{7}:17\frac{1}{3}=\frac{4}{11}\)
\(\Rightarrow\left(5\frac{8}{17}-\frac{4}{17}\right):x+\frac{22}{7}:\frac{52}{3}=\frac{4}{11}\)
\(\Rightarrow5\frac{4}{17}:x+\frac{33}{182}=\frac{4}{11}\)
\(\Rightarrow\frac{89}{17}:x=\frac{4}{11}-\frac{33}{182}\)
\(\Rightarrow\frac{89}{17}:x=\frac{365}{2002}\)
\(\Rightarrow x=\frac{89}{17}:\frac{365}{2002}\)
\(\Rightarrow x\approx28,7\) (số hơi lẻ)
e) \(\frac{17}{2}-\left|2x-\frac{3}{4}\right|=-\frac{7}{4}\)
\(\Rightarrow\left|2x-\frac{3}{4}\right|=\frac{17}{2}+\frac{7}{4}\)
\(\Rightarrow\left|2x-\frac{3}{4}\right|=\frac{41}{4}\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x-\frac{3}{4}=\frac{41}{4}\\2x-\frac{3}{4}=-\frac{41}{4}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x=11\\2x=-\frac{19}{2}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{11}{2}\\x=-\frac{19}{4}\end{array}\right.\)
b) \(\left(2,4.x-36\right)\div1\frac{5}{7}=-1\)
\(\left(2,4.x-36\right)=-1.\frac{12}{7}\)
\(2,4.x-36=-\frac{12}{7}\)
\(2,4.x=-\frac{12}{7}+36\)
\(2,4.x=\frac{240}{7}\)
\(x=\frac{240}{7}\div2,4\)
\(x=\frac{100}{7}\)
a) \(\frac{3}{x-5}=\frac{-4}{x+2}\)
\(\Rightarrow3.\left(x+2\right)=-4.\left(x-5\right)\)
\(\Rightarrow3x+6=-4x+20\)
\(\Rightarrow7x=14\)
\(\Rightarrow x=2\)