Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình thiếu điều kiện xác định ^_^
Cho mình bổ xung thêm
\(ĐKXĐ:x\ne\pm1\)
và mình sửa lại nữa là: \(\orbr{\begin{cases}x=-1\left(L\right)\\x=-3\left(TM\right)\end{cases}}\)
Vậy \(S=\left\{-3\right\}\)
\(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{x^2+3}{1-x^2}\) đkxđ \(x\ne\pm1\)
\(\Leftrightarrow\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}=\frac{-x^2-3}{\left(x+1\right)\left(x-1\right)}\)
\(\Leftrightarrow x^2+2x+1-x^2-2x-1+x^2+3=0\)
\(\Leftrightarrow x^2+3=0\)
\(\Leftrightarrow x^2=-3\)
\(\Leftrightarrow x\in\varnothing\)
Đkxđ: \(\hept{\begin{cases}x\ne2\\x\ne0\end{cases}}\)
\(\frac{x+3}{x-2}+\frac{x+2}{x}=2\)
\(\Leftrightarrow\frac{x\left(x+3\right)}{x\left(x-2\right)}+\frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)x}=\frac{2x\left(x-2\right)}{x\left(x-2\right)}\)
\(\Rightarrow x\left(x+3\right)+\left(x-2\right)\left(x+2\right)=2x\left(x-2\right)\)
\(\Leftrightarrow x^2+3x+x^2-4=2x^2-4x\)
\(\Leftrightarrow x^2+3x+x^2-2x^2+4x=4\)
\(\Leftrightarrow7x=4\)
\(\Leftrightarrow x=\frac{4}{7}\)
\(\frac{x+5}{x-5}+\frac{x-5}{x+5}=\frac{2\left(x^2+25\right)}{x^2-25}\left(x\ne\pm5\right)\)
\(\Leftrightarrow\frac{x+5}{x-5}+\frac{x-5}{x+5}-\frac{2\left(x^2+25\right)}{\left(x-5\right)\left(x+5\right)}=0\)
\(\Leftrightarrow\frac{\left(x+5\right)^2}{\left(x-5\right)\left(x+5\right)}+\frac{\left(x-5\right)^2}{\left(x-5\right)\left(x+5\right)}-\frac{2x^2+50}{\left(x-5\right)\left(x+5\right)}=0\)
\(\Leftrightarrow\frac{x^2+10x+25}{\left(x-5\right)\left(x+5\right)}+\frac{x^2-10x+25}{\left(x-5\right)\left(x+5\right)}-\frac{2x^2+50}{\left(x-5\right)\left(x+5\right)}=0\)
\(\Leftrightarrow\frac{x^2+10x+25+x^2-10x+25-2x^2-50}{\left(x-5\right)\left(x+5\right)}=0\)
\(\Rightarrow\frac{0}{\left(x-5\right)\left(x+5\right)}=0\)
=> PT đúng với mọi x khác \(\pm5\)
Refund QB nhìn logic :V
\(\frac{x+5}{x-5}+\frac{x-5}{x+5}=\frac{2\left(x^2+25\right)}{x^2-25}\)
\(\frac{x+5}{x-5}+\frac{x-5}{x+5}=\frac{2\left(x^2+25\right)}{\left(x+5\right)\left(x-5\right)}\)
\(\left(x+5\right)^2-\left(x-5\right)^2=2\left(x^2+25\right)\)
\(20x=2x^2+50\)
\(20x-2x^2-50=0\)
\(2\left(10x-x^2-25\right)=0\)
\(-x^2+10x+25=0\)
\(x^2-10x+25=0\)
\(x^2-2\left(x\right)\left(5\right)+5^2=0\)
\(\left(x-5\right)^2=0\)
\(x-5=0\Leftrightarrow x=5\)
\(ĐKXĐ:x\ne-1;x\ne\frac{2}{3}\)
\(pt\Leftrightarrow\frac{7x-2\left(x+1\right)+\left(3x-2\right)}{\left(3x-2\right)\left(x+1\right)}=1\)
\(\Leftrightarrow7x-2\left(x+1\right)+\left(3x-2\right)=\left(3x-2\right)\left(x+1\right)\)
\(\Leftrightarrow8x-4=3x^2-2x+3x-2\)
\(\Leftrightarrow3x^2-7x+2=0\)
\(\Delta=7^2-4.3.2=25,\sqrt{\Delta}=5\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{7+5}{6}=2\\x=\frac{7-5}{6}=\frac{1}{3}\end{cases}}\)
Tự cho đkxđ nha!!!
<=> \(\frac{x+1-x}{x+1}=\frac{7x}{\left(3x-2\right)\left(x+1\right)}-\frac{2}{3x-2}\)
<=> \(\frac{3x-2}{\left(3x-2\right)\left(x+1\right)}=\frac{7x}{\left(3x-2\right)\left(x+1\right)}-\frac{2\left(x+1\right)}{\left(3x-2\right)\left(x+1\right)}\)
<=> \(\frac{7x-2x-2-3x+2}{\left(3x-2\right)\left(x+1\right)}=0\)
<=> \(\frac{2x}{\left(3x-2\right)\left(x+1\right)}=0\)
=> 2x = 0
<=> x = 0 (TM)
Vậy ...
\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)
\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Leftrightarrow\frac{x\left(x+2\right)-\left(x-2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)\(\Leftrightarrow x\left(x+2\right)-\left(x-2\right)=2\)
\(\Leftrightarrow x^2+2x-x+2=2\)\(\Leftrightarrow x^2+x=0\)\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
So sánh với ĐKXĐ ta thấy: \(x=0\)không thoả mãn
Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\)
Ta có: \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)
\(\Leftrightarrow\frac{x.\left(x+2\right)-\left(x-2\right)}{\left(x-2\right).x}=\frac{2}{x^2-2x}\)
\(\Leftrightarrow\frac{x^2+2x-x+2}{x^2-2x}=\frac{2}{x^2-2x}\)
\(\Rightarrow x^2+x+2=2\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x.\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy \(S=\left\{-1;0\right\}\)
\(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{4x}{x^2-1}\) (1)
điều kiện xác định: \(x\ne\pm1\)
(1) => \(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{4x}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow\frac{\left(x+1\right)^2-\left(x-1\right)^2-4x}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\frac{\left(x+1+x-1\right)\left(x+1-x+1\right)-4x}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\frac{2x.2-4x}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\frac{0x}{\left(x-1\right)\left(x+1\right)}=0\)
Vậy phương trình có nghiệm với mọi x \(\ne\pm1\)
Gợi ý :
Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)
Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)
Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)
bài 3
\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)
=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)
=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
=> x=100
Mạnh dạn đưa pt 1 ẩn về 2 ẩn :)
Đặt \(\frac{x+3}{x-2}=u;\frac{x-3}{x+2}=v\)
Ta có:
\(u^2+6v=7uv\)
\(\Leftrightarrow\left(u-v\right)\left(u-6v\right)=0\)
Xét nốt nha!
Câu b là phân tích các kiểu ra dạng như thế này nhé !
\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Hoặc là bạn dựa vào đó mà phân tích đến cái A là Ok
\(ĐKXĐ:x\ne\pm3\)
\(pt\Leftrightarrow\frac{\left(x+3\right)^2-\left(x-3\right)^2}{x^2-9}=\frac{17}{x^2-9}\)
\(\Leftrightarrow\left(x+3\right)^2-\left(x-3\right)^2=17\)
Tự dừng bấm Gửi tl
\(\Leftrightarrow x^2+6x+9-x^2+6x-9=17\)
\(\Leftrightarrow12x=17\Leftrightarrow x=\frac{17}{12}\)