Cho tam giác ABC vuông tại A .Gọi N là trung điểm của AC. Đường trung trực của AC cắt cạnh BC tại M
a. Chứng minh tam giác AMC cân tại M
b.Chứng minh tam giác MAB cân tại M
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
_Giải _
a) C/m t/g AMC cân tại M
* Xét t/g AMN và t/g CMN :
- AN = CN ( N là trung điểm )
- Góc ANM = CNM ( = 900 do MN là trung trực đoạn AC )
- MN chung
=> T/g AMN = T/g CMN
=> MA = MC
=> T/g AMC cân tại M
b ) Em hông biết làm .. T.T Thông cẻm nhe :)))))
a: Xét ΔAMO vuông tại M và ΔANO vuông tại N có
AO chung
AM=AN
Do đó: ΔAMO=ΔANO
=>góc MAO=góc NAO
=>AO là phân giác của góc MAN
b: OB=OA
OA=OC
Do đó: OB=OC
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
c/ Ta có tính chất: Trong 1 tam giác vuông, trung tuyến của góc vuông đến cạnh đối diện (cạnh huyền) sẽ bằng 1/2 cạnh huyền.
Xét tam giác vuông ABC, có trung tuyến AM, vậy AM=CM (=1/2 BC) => Tam giác ACM cân ( 2 cạnh bên bằng nhau) => ^ MCA=^MAC
Xét tam giác DMB và tam giác CMA
Có: CM=MB ( M trugn điểm)
DM=AM ( gt)
^DMB=^CMA (đđ)
Vậy hai tam giác =nhau =>^BDM=^MAC và ^DBM=^
B suy tiếp nhé!
Bạn tự vẽ hình nha!
Xét tam giác ABC vuông tại A, có: \(BC^2=AB^2+AC^2\)
\(225=81+AC^2\)
\(\Rightarrow AC^2=144\)
\(\Rightarrow AC=12\left(cm\right)\)
Xét tam giác MAB và tam giác MDC:
Có: DM=AM (gt)
CM=MB (AM trung tuyến)
Góc DMC=Góc AMB (đđ)
Vậy tam giác MAB= tam giác MDC (C.G.C)
Mình ghi nhầm:
a) Chứng minh: tam giác MAB= tam giác MDC. Suy ra góc ACD vuông
b) Gọi K là trung điểm của AC. Chứng minh: KB=KD
c) KD cắt BC tại I. KB cắt AD tại N. Chứng minh : tam giác KNI cân
a) Xét tam giác NMA và tam giác NMC ta có :
NM : cạnh chung
góc ANM = góc CNM = 90 độ
NA = NC ( GT)
<=> tam giác NMA = tam giác NMC ( c-g-c )
=> MA=MC ( cặp cạnh tương ứng )
=> tam giác AMC cân . ( đpcm )
b) Ta có : N là trung điểm của AC
=> M là trung điểm của BC => MB=MC (1)
mà MA= MC (2)
Từ (1) và (2) => MA =MB => tam giác MAB cân tại M ( đpcm )