Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác NMA và tam giác NMC ta có :
NM : cạnh chung
góc ANM = góc CNM = 90 độ
NA = NC ( GT)
<=> tam giác NMA = tam giác NMC ( c-g-c )
=> MA=MC ( cặp cạnh tương ứng )
=> tam giác AMC cân . ( đpcm )
b) Ta có : N là trung điểm của AC
=> M là trung điểm của BC => MB=MC (1)
mà MA= MC (2)
Từ (1) và (2) => MA =MB => tam giác MAB cân tại M ( đpcm )
GT | ΔABC cân tại A, M là trung điểm của BC \(D\in\)AB DE\(\perp\)MA(E\(\in\)AC) |
KL | a: ΔAMB=ΔAMC b: ΔADE cân |
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔAMB=ΔAMC
=>\(\widehat{BAM}=\widehat{CAM}\)
=>\(\widehat{DAM}=\widehat{EAM}\)
=>AM là phân giác của góc DAE
Xét ΔADE có
AM là đường cao
AM là đường phân giác
Do đó: ΔADE cân tại A
a)Vì trung trực của AC cắt BC tại M=>MA+MC =>Tam giác MAC cân tại M mà có góc đáy bằng góc C mà góc C là góc đáy của tam giác cân tại A=>AMC=BAC(Hai góc ở đỉnh của hai tam giác cân)
b)Xét tam giác CAN và tam giác ABM có:
AB=AC(gt)
MB=AN(gt)
Mà NAC=C+A(vì góc MAC=góc A)
ABM=C+A
=>NAC= ABM
=>Tam giác CAN=tam giác ABM(c.g.c)
=>MA=NC mà MA=MC(c/m trên)=>CM=NC
c)Thêm điều kiện góc A=450
A) Vì trung trực của AC cắt BC tại M ==> Tam giác MAC cân tại M mà nó lại có góc đáy bằng góc C mà góc C lại là góc đáy của tam giác cân tại A ==> AMC = BAC(Hai góc ở đỉnh của hai tam giác cân)
B) Xét tam giác CAN và tam giác ABM có:
AB = AC (gt)
MB = AN (gt)
Mà NAC = C + A (vì góc MAC bằng với góc A)
ABM = C + A
- NAC = ABM
- Tam giác Can = Tam giác ABM (c.g.c)
MA = NC mà MA = CM (c/m trên) ==> CM = NC
C)Thêm điều kiện góc phải là 450
a: Xét ΔNAB có
NM vừa là đường cao, vừa là trung tuyến
nên ΔBAN cân tại N
b: Xét ΔBAC có
M là trung điểm của BA
MN//AC
Do đó: N là trung điểm của BC
_Giải _
a) C/m t/g AMC cân tại M
* Xét t/g AMN và t/g CMN :
- AN = CN ( N là trung điểm )
- Góc ANM = CNM ( = 900 do MN là trung trực đoạn AC )
- MN chung
=> T/g AMN = T/g CMN
=> MA = MC
=> T/g AMC cân tại M
b ) Em hông biết làm .. T.T Thông cẻm nhe :)))))