K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

c/ Ta có tính chất: Trong 1 tam giác vuông, trung tuyến của góc vuông đến cạnh đối diện (cạnh huyền) sẽ bằng 1/2 cạnh huyền.

Xét tam giác vuông ABC, có trung tuyến AM, vậy AM=CM (=1/2 BC) => Tam giác ACM cân ( 2 cạnh bên bằng nhau) => ^ MCA=^MAC

Xét tam giác DMB và tam giác CMA

Có: CM=MB ( M trugn điểm)

      DM=AM ( gt)

      ^DMB=^CMA (đđ)

Vậy hai tam giác =nhau =>^BDM=^MAC và ^DBM=^

B suy tiếp nhé!

22 tháng 4 2017

Bạn tự vẽ hình nha!

Xét tam giác ABC vuông tại A, có: \(BC^2=AB^2+AC^2\)

                                                \(225=81+AC^2\)

                                                 \(\Rightarrow AC^2=144\)

                                                \(\Rightarrow AC=12\left(cm\right)\)

Xét tam giác MAB và tam giác MDC:

Có: DM=AM (gt)

      CM=MB (AM trung tuyến)

      Góc DMC=Góc AMB (đđ)

Vậy tam giác MAB= tam giác MDC (C.G.C)

a: \(AC=\sqrt{15^2-9^2}=12\left(cm\right)\)

b: XétΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔMAB=ΔMDC

29 tháng 4 2017

A B C D M N K E

a)áp dụng định lí Pytago cho tam giác vuông ABC:

AB2+AC2=BC2

=>AC2=BC2-AB2=152-92=144

=>AC=12(cm)

b)Xét \(\Delta\)MAB và \(\Delta\)MDC có:

MA=MD(A,D đối xứng qua M)

góc AMB= góc DMC(đối đỉnh)

MB=MC(AM là trung tuyến của tam giác ABC)

=>\(\Delta\)MAB=\(\Delta\)MDC(c.g.c)

c)\(\Delta\)MAB=\(\Delta\)MDC

=>AB=DC và \(\widehat{BAM}=\widehat{DCM}\)(1)

\(\Delta\)ABC vuông ở A có trung tuyến AM=>AM=MB=MC

=>\(\Delta\)MAC cân ở M

=>\(\widehat{MAC}=\widehat{MCA}\)(2)

Từ 1 và 2 => \(\widehat{BAC}=\widehat{DCA}=90^O\)

Xét \(\Delta\)ABK và \(\Delta\)CDK có

BK=CK(K là trung điểm BC)

\(\widehat{BAC}=\widehat{DCA}=90^O\)

AB=DC(c/m trên)

=>\(\Delta\)ABK=\(\Delta\)CDK(c.g.c)

=>BK=DK

=>\(\Delta\)BDK cân ở K

d)Do AB<AC

=>\(\widehat{ABC}>\widehat{ACB}\)

Do MB=MA =>\(\Delta\)MAB cân ở M

=>\(\widehat{ABC}=\widehat{MAB}\)

\(\widehat{ACB}=\widehat{MCA}=\widehat{MAC}\)(C/m câu c)

=>\(\widehat{MAB}>\widehat{MAC}\)

e)AM là trung tuyến \(\Delta\)ABC

K là trung điểm AC=>BK là trung tuyến tam giác ABC

AM cắt BK tại N=>N là trọng tâm \(\Delta\)ABC

=>NC là trung tuyến \(\Delta\)ABC

E là trung điểm AB=>NE là trung tuyến \(\Delta\)ABC

=>N,E,C thẳng hàng

29 tháng 4 2017

Xuân Tuấn Trịnh Nhật Linh Khùng Điên Hoang Hung Quan Hung nguyen Ace Legona Đức Minh Nguyễn Huy Tú Võ Đông Anh Tuấn

Thien Tu Borumngonhuminh Tuấn Anh Phan Nguyễn Đặng Phương Nam các anh chị giúp em với ,làm ơn ! khocroi

a: AC=12cm

b: Xét ΔMAB và ΔMDC có 

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó ΔMAB=ΔMDC

c: Xét ΔABK vuông tại A và ΔCDK vuông tại C có

AB=CD

AK=CK

Do đó:ΔABK=ΔCDK

Suy ra: BK=DK

hay ΔBKD cân tại K

17 tháng 4 2019

đề bài sai nhé, bn xem lại câu a

17 tháng 4 2019

Mình ghi nhầm: 

a) Chứng minh: tam giác MAB= tam giác MDC. Suy ra góc ACD vuông

b) Gọi K là trung điểm của AC. Chứng minh: KB=KD

c) KD cắt BC tại I. KB cắt AD tại N. Chứng minh : tam giác KNI cân

a) Xét ΔMAB và ΔMKC có 

MA=MK(gt)

\(\widehat{AMB}=\widehat{KMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔMAB=ΔMKC(c-g-c)

a: Xét ΔMAB và ΔMKC có

MA=MK

góc AMB=góc KMC

MB=MC

=>ΔMAB=ΔMKC

b: ΔMAB=ΔMKC

=>góc MAB=góc MKC

=>AB//KC

=>KC vuông góc AC

=>góc ACK=90 độ

c: Xét ΔIAB vuông tại A và ΔICK vuông tại C có

IA=IC

AB=CK

=>ΔIAB=ΔICK

=>IB=IK

d: Xét ΔABC có CI/CA=CM/CB

nên IM//AB

=>IM vuông góc KB