Cho tỉ lệ thức (a+b)/(c+d)=(a-2*b)/(c-2d) với b;d khác 0.Chứng minh rằng a/b=c/d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a+b}{c+d}=\frac{a-2b}{c-2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a+b}{c+d}=\frac{a-2b}{c-2d}=\frac{a+b-\left(a-2b\right)}{c+d-\left(c-2d\right)}=\frac{3b}{3d}=\frac{b}{d}\)
\(\frac{a+b}{c+d}=\frac{b}{d}=\frac{a+b-b}{c+d-d}=\frac{a}{c}\)
Suy ra \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\).
từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\)ad = bc \(\Rightarrow\)ad + 2bc = bc + 2ad
\(\Rightarrow\)ab + ad + 2bc + 2cd = ab + 2ad + bc + 2cd
\(\Rightarrow\)a ( b + d ) + 2c ( b + d ) = a ( b + 2d ) + c ( b + 2d )
\(\Rightarrow\)( a + 2c ) ( b + d ) = ( a + c ) ( b + 2d )
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\left(a+2c\right)\left(b+d\right)=\left(bk+2dk\right)\left(b+d\right)=k\left(b+2d\right)\left(b+d\right)\)
\(\left(a+c\right)\left(b+2d\right)=\left(bk+dk\right)\left(b+2d\right)=k\left(b+d\right)\left(b+2d\right)\)
Do đó: VT=VP
mk trả lời như thế này có đúng không các bạn góp ý nhé
vì a/b=c/d = \(\frac{a+c}{b+d}\left(1\right)\)
ta lại có:
a/b=c/d=\(\frac{a+2c}{2d}=\frac{a+2c}{b+2d}\left(2\right)\)
từ 1 và 2 ta có:
=>(a+2c).(b+d)=(a+c).(b+2d)
(a² + b²) / (c² + d²) = ab/cd
<=> (a² + b²)cd = ab(c² + d²)
<=> a²cd + b²cd = abc² + abd²
<=> a²cd - abc² - abd² + b²cd = 0
<=> ac(ad - bc) - bd(ad - bc) = 0
<=> (ac - bd)(ad - bc) = 0
<=> ac - bd = 0 hoặc ad - bc = 0
<=> ac = bd hoặc ad = bc
<=> a/b = d/c hoặc a/b = c/d (đpcm)
(a^2+b^2)/(c^2+d^2)=ab/cd
<=>(a^2+b^2)cd=(c^2+d^2)ab
<=>a^2cd+b^2cd=abc^2+abd^2
<=>a^2cd+b^2cd-abc^2-abd^2=0
<=>ad(ac-bd)-bc(ac-bd)=0
<=>(ac-bd)(ad-bc)=0
<=>ac=bd hoặc ad=bc
=>a/b=c/d hoặc a/b=d/c
Lời giải:
Đặt $\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk$.
Ta có:
$(a+2c)(b+d)=(bk+2dk)(b+d)=k(b+2d)(b+d)(1)$
$(a+c)(b+2d)=(bk+dk)(b+2d)=k(b+d)(b+2d)(2)$
Từ $(1); (2)\Rightarrow (a+2c)(b+d)=(a+c)(b+2d)$