Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a-2c\right)\left(b+2d\right)=\left(b-2d\right)\left(a+2c\right)\)
\(\Leftrightarrow ab+2ad-2bc-4cd=ab+2bc-2ad-4cd\)
\(\Leftrightarrow2ad+2ad=2bc+2bc\Leftrightarrow4ab=4bc\)
\(\Leftrightarrow ad=bc\Rightarrow\dfrac{a}{b}=\dfrac{c}{d},\left(a,b,c,d\ne0\right)\)
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\)
\(\Rightarrow ad+ad+bc=bc+ad+bc\)
\(\Rightarrow2ad+bc=2bc+ad\)
\(\Rightarrow ab+2ad+bc+2cd=ab+2bc+ad+2cd\)
\(\Rightarrow a\left(b+2d\right)+c\left(b+2d\right)=b\left(a+2c\right)+d\left(a+2c\right)\)
\(\Rightarrow\left(a+c\right)\left(b+2d\right)=\left(a+2c\right)\left(b+d\right)\rightarrowđpcm\)
DỄ MÀ
(a+2c)(b+d)=ab+ad+2bc+2cd
(a+c)(b+2d)=ab+2ad+bc+2cd
Vì a/b=c/d nên ad=bc
suy ra đpcm
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (1).
Có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{b}=\frac{2c}{2d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{a+c}{b+d}=\frac{a+2c}{b+2d}.\)
\(\Rightarrow\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\left(đpcm\right).\)
Chúc bạn học tốt!
mk trả lời như thế này có đúng không các bạn góp ý nhé
vì a/b=c/d = \(\frac{a+c}{b+d}\left(1\right)\)
ta lại có:
a/b=c/d=\(\frac{a+2c}{2d}=\frac{a+2c}{b+2d}\left(2\right)\)
từ 1 và 2 ta có:
=>(a+2c).(b+d)=(a+c).(b+2d)
(a² + b²) / (c² + d²) = ab/cd
<=> (a² + b²)cd = ab(c² + d²)
<=> a²cd + b²cd = abc² + abd²
<=> a²cd - abc² - abd² + b²cd = 0
<=> ac(ad - bc) - bd(ad - bc) = 0
<=> (ac - bd)(ad - bc) = 0
<=> ac - bd = 0 hoặc ad - bc = 0
<=> ac = bd hoặc ad = bc
<=> a/b = d/c hoặc a/b = c/d (đpcm)
(a^2+b^2)/(c^2+d^2)=ab/cd
<=>(a^2+b^2)cd=(c^2+d^2)ab
<=>a^2cd+b^2cd=abc^2+abd^2
<=>a^2cd+b^2cd-abc^2-abd^2=0
<=>ad(ac-bd)-bc(ac-bd)=0
<=>(ac-bd)(ad-bc)=0
<=>ac=bd hoặc ad=bc
=>a/b=c/d hoặc a/b=d/c
(a+2c)(b+d)=(a+c)(b+2d)
<=> ab + ad + 2bc + 2cd = ab + 2ad + bc + 2cd
<=> bc - ad = 0. (1)
Mà a/b=c/d <=> ad=bc => (1) luôn đúng. => đpcm
Từ ( a + 2c ) ( b + d ) = ( a + c ) ( b + 2d )
\(\Rightarrow\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\)\(\Leftrightarrow\frac{bk+2dk}{b+2d}=\frac{bk+dk}{b+d}\)
Xét VT \(\frac{bk+2dk}{b+2d}=\frac{k\left(b+2d\right)}{b+2d}=k\left(1\right)\)
Xét VP \(\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\left(2\right)\)
Từ (1) và (2) -->Đpcm
a)a/b=c/d=a+b/c+d=a-b/c-d(tc day ti so bang nhau)
=>a+b/a-b=c+d/c-d
b)a/b=c/d=>5a/5b=2c/2d=5a+2c/5c+2d(*) va a/b=4c/4d=a-4c/c-4d(**)
c)a/b=c/d=a+b/c+d=>(a/b)^2=ab/cd=(a+b/c+d)^2
a, ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2b}{2d}\)
áp dụng tính chất dă y tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2b}{2d}=\dfrac{a+2b}{c+2d}=\dfrac{2a-b}{2c-d}\)
\(\Rightarrow\dfrac{a+2b}{c+2d}=\dfrac{2a-b}{2c-d}\Rightarrow\dfrac{a+2b}{2a-b}=\dfrac{c+2d}{2c-d}\) (ĐPCM)
b, ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}\)
áp dụng tính chất dă tỉ số bằng nhau ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}=\dfrac{a+3c}{b+3d}=\dfrac{a-c}{b-d}\)
\(\Rightarrow\dfrac{a+3c}{b+3d}=\dfrac{a-c}{b-d}\)
\(\Rightarrow\left(a+3c\right)\left(b-d\right)=\left(b+3d\right)\left(a-c\right)\) (ĐPCM)
Lời giải:
Đặt $\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk$.
Ta có:
$(a+2c)(b+d)=(bk+2dk)(b+d)=k(b+2d)(b+d)(1)$
$(a+c)(b+2d)=(bk+dk)(b+2d)=k(b+d)(b+2d)(2)$
Từ $(1); (2)\Rightarrow (a+2c)(b+d)=(a+c)(b+2d)$