Có bao nhiêu phân số \(\frac{m}{n}>1\) ; m, n thuộc Z+ thỏa mãn m.n=13860
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có PT <=> 40m + 10n - mn = 0
<=> 10n = m(n - 40)
<=> m = \(\frac{10n}{n-40}\)= 10 + \(\frac{400}{n-40}\)
Để m tự nhiên thì n - 40 phải là ước của 400 và n lẻ nên n - 40 cũng lẻ => n - 40 là ước của 25
Ta lại có n < 55 => n - 40 < 15 => n -40 = (1; 5) tương ứng (m, n) = (41, 410; 45, 90)
Giả sử: d=(m+n,m2+n2)d=(m+n,m2+n2)
⇒⎧⎨⎩m+n⋮dm2+n2⋮d⇒{m+n⋮dm2+n2⋮d
⇒⎧⎨⎩m+n⋮d(m+n)2−2mn⋮d⇒{m+n⋮d(m+n)2−2mn⋮d
⇒⎧⎨⎩m+n⋮d2mn⋮d⇒{m+n⋮d2mn⋮d
⇒⎧⎨⎩2m(m+n)−2mn⋮d2n(m+n)−2mn⋮d⇒{2m(m+n)−2mn⋮d2n(m+n)−2mn⋮d
⇒⎧⎨⎩2m2⋮d2n2⋮d⇒{2m2⋮d2n2⋮d
d|(2m2,2n2)=2(m2,n2)=2d|(2m2,2n2)=2(m2,n2)=2
⇒d=1⇒d=1 hoặc d=2d=2
- Nếu m,nm,n cùng lẻ thì d=2d=2
- Nếu m,nm,n khác tính chẵn lẻ thì d=1
Ta có:
\(\frac{n+5}{n}=\frac{n}{n}+\frac{5}{n}=1+\frac{5}{n}\)
Để \(\frac{n+5}{n}\) có GTN thì \(1+\frac{5}{n}\) phải có GTN
\(\Rightarrow\frac{5}{n}\) phải có GTN
\(\Rightarrow5\) phải chia hết cho n
\(\Rightarrow n\inƯ\left(5\right)\)
\(\Rightarrow n\in\left\{\pm1;\pm5\right\}\)
Mà n là STN nên \(n\in\left\{1;5\right\}\)
Vậy có tất cả 2 STN n để \(\frac{n+5}{n}\) có GTN
Ta có : \(\frac{n+5}{n}=\frac{n}{n}+\frac{5}{n}=1+\frac{5}{n}\)
Để \(1+\frac{5}{n}\in N\Leftrightarrow\frac{5}{n}N\in\)N
=> n thuộc ước của 5 là 1 ; 5
Vậy n = 1 ; 5
Lời giải:
Với $n$ nguyên, để $\frac{3n+4}{n-1}$ nguyên thì:
$3n+4\vdots n-1$
$\Rightarrow 3(n-1)+7\vdots n-1$
$\Rightarrow 7\vdots n-1$
$\Rightarrow n-1\in \left\{\pm 1; \pm 7\right\}$
$\Rightarrow n\in \left\{2; 0; 8; -6\right\}$
Thử các giá trị này của $n$ vào $\frac{6n-3}{3n+1}$ thì $n=0$ là TH duy nhất thỏa mãn $\frac{6n-3}{3n+1}$ cũng là số nguyên.