K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2023

\(\dfrac{30-x}{30}=\dfrac{8}{15}\)

\(\Rightarrow\left(30-x\right)15=30\times8\)

\(\Rightarrow\left(30-x\right)15=240\)

\(\Rightarrow30-x=240:15\)

\(\Rightarrow30-x=16\)

\(\Rightarrow x=30-16\)

\(\Rightarrow x=14\)

__

\(\dfrac{x+30}{72}=\dfrac{5}{8}\)

\(\Rightarrow\left(x+30\right)8=5\times72\)

\(\Rightarrow\left(x+30\right)8=360\)

\(\Rightarrow x+30=360:8\)

\(\Rightarrow x+30=45\)

\(\Rightarrow x=45-30\)

\(\Rightarrow x=15\)

2 tháng 4 2023

\(\dfrac{30-x}{30}\) = \(\dfrac{5}{15}\)

\(\dfrac{30-x}{30}\) = \(\dfrac{1}{3}\)

30 - \(x\)   = \(\dfrac{1}{3}\) \(\times\) 30

30 - \(x\)  = 10

       \(x\)  =30 - 10

       \(x\) = 20

 \(\dfrac{x+30}{72}\) = \(\dfrac{5}{8}\) 

  \(x+30\) = \(\dfrac{5}{8}\) \(\times\) 72

  \(x+30\) = 45

 \(x\)          = 45 - 30

 \(x\)          = 15

2 tháng 4 2023

Đề y/c tìm x à em?

17 tháng 11 2021

\(x^2=900\Leftrightarrow x^2=30^2\Rightarrow x=30\)

Chọn A

17 tháng 11 2021

mik nghĩ A

\(\Leftrightarrow3\left(5x-1\right)+5\left(2x+3\right)>2\left(x-8\right)-x+1\)

=>15x-3+10x+15>2x-16-x+1

=>25x+12>x-15

=>24x>-27

hay x>-9/8

\(\Leftrightarrow2x-\dfrac{1}{3}=\left(\dfrac{12}{30}-\dfrac{4}{15}\right):\dfrac{3}{5}=\dfrac{2}{9}\)

=>2x=5/9

hay x=5/18

3 tháng 1 2022

x= 5/18

=>\(1\cdot\dfrac{2}{4}\cdot\dfrac{3}{6}\cdot...\cdot\dfrac{31}{62}\cdot\dfrac{1}{64}=2^x\)

=>\(2^x=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot...\cdot\dfrac{1}{2}\cdot\dfrac{1}{64}=\left(\dfrac{1}{2}\right)^{30}\cdot\left(\dfrac{1}{2}\right)^6=\dfrac{1}{2^{36}}\)

=>x=-36

31 tháng 1 2018

Khỏi ghi đề nha :

\(\Leftrightarrow3\left(5x-1\right)-5\left(2x+3\right)=2\left(x-8\right)-x\)

\(\Leftrightarrow15x-3-10x-15-2x+16+x=0\)

\(\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}.\)

4 tháng 1 2018

\(\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\dfrac{4}{10}\cdot...\cdot\dfrac{14}{30}.\dfrac{15}{32}=\dfrac{1}{2^x}\)

\(\Rightarrow\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot14\cdot15}{4\cdot6\cdot8\cdot10\cdot...\cdot30\cdot32}=\dfrac{1}{2^x}\)

\(\Rightarrow\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot14\cdot15}{2\cdot4\cdot6\cdot8\cdot10\cdot...\cdot30\cdot32}=\dfrac{1}{2^{x+1}}\)

\(\Rightarrow\dfrac{1}{2^{15}\cdot32}=\dfrac{1}{2^{x+1}}\)

\(\Rightarrow2^{15}.2^5=2^{x+1}\)

\(\Rightarrow2^{20}=2^{x+1}\)

\(\Rightarrow x+1=20\Rightarrow x=19\)

Vậy x = 19.

25 tháng 2 2018

a.

\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)

\(\Leftrightarrow x\left(x+1\right).\left(x-1\right)\left(x+2\right)-24=0\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)

Đặt \(a=x^2+x-1\) , ta có pt:

\(\left(a+1\right)\left(a-1\right)-24=0\)

\(\Leftrightarrow a^2-1-24=0\)

\(\Leftrightarrow a^2-25=0\)

\(\Leftrightarrow\left(a-5\right)\left(a+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=5\\a=-5\end{matrix}\right.\)

*Với a = 5 ta được:

\(x^2+x-1=5\)

\(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow x^2+3x-2x-6=0\)

\(\Leftrightarrow\left(x^2+3x\right)-\left(2x+6\right)=0\)

\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

*Với a = -5 ta được:

\(x^2+x-1=-5\)

\(\Leftrightarrow x^2+x+4=0\)

\(\Leftrightarrow x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{15}{4}=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}=0\) ( loại)

Vậy pt có tập nghiệm là: \(s=\left\{-3;2\right\}\)

25 tháng 2 2018

c)(ĐKXĐ: x khác 30;29)

\(\Leftrightarrow\dfrac{x-29}{30}-1+\dfrac{x-30}{29}-1=\dfrac{29}{x-30}-1+\dfrac{30}{x-29}-1\)

\(\Leftrightarrow\dfrac{x-59}{30}+\dfrac{x-59}{29}=\dfrac{x-59}{30-x}+\dfrac{x-59}{29-x}\)

\(\Leftrightarrow x=59\)(tm) or \(\dfrac{1}{30}+\dfrac{1}{29}-\dfrac{1}{30-x}-\dfrac{1}{29-x}=0\)

\(\Leftrightarrow\dfrac{-x}{30\left(30-x\right)}+\dfrac{-x}{29\left(29-x\right)}=0\)

\(\Leftrightarrow x=0\)(tm) or \(\dfrac{1}{30\left(30-x\right)}+\dfrac{1}{29\left(29-x\right)}=0\)

\(\Leftrightarrow1741-59x=0\)

\(\Leftrightarrow x=\dfrac{1741}{59}\left(tm\right)\)

Vậy S={0;\(\dfrac{1741}{59}\);59}