\(\dfrac{5x-1}{10}+\dfrac{2X+3}{6}>\dfrac{X-8}{15}-\dfrac{x-1}{30}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow3\left(5x-1\right)+5\left(2x+3\right)>2\left(x-8\right)-x+1\)

=>15x-3+10x+15>2x-16-x+1

=>25x+12>x-15

=>24x>-27

hay x>-9/8

31 tháng 1 2018

Khỏi ghi đề nha :

\(\Leftrightarrow3\left(5x-1\right)-5\left(2x+3\right)=2\left(x-8\right)-x\)

\(\Leftrightarrow15x-3-10x-15-2x+16+x=0\)

\(\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}.\)

30 tháng 4 2017

bài này đề bài là chứng minh hay là giải bất phương trình vậy bạn

1 tháng 5 2017

giả pt á b

29 tháng 5 2020

5) 3x - 1 < 8

⇔ 3x < 9

⇔ x < 3

29 tháng 5 2020

4) -8x > 24

<=> x > 32

4 tháng 2 2018

a. \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)

<=> \(5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-6\cdot5\)

<=> \(25x+10-80x+10=24x+12-30\)

<=> \(25x-80x-24x=12-30-10-10\)

<=> \(-79x=-38\)

<=> \(x=\dfrac{-38}{-79}\)

\(x=\dfrac{38}{79}\)

b. \(x-\dfrac{2x-5}{5}+\dfrac{x+8}{6}=7+\dfrac{x-1}{3}\)

<=> \(30\cdot x-6\left(2x-5\right)+5\left(x+8\right)=30\cdot7+10\left(x-1\right)\)

<=> \(30x-12x+30+5x+40=210+10x-10\)

<=> \(30x-12x+5x-10x=210-10-30-40\)

<=> \(13x=130\)

<=> \(x=\dfrac{130}{13}\)

\(x=10\)

c. \(\dfrac{x+1}{15}+\dfrac{x+2}{7}+\dfrac{x+4}{4}+6=0\)

<=> \(28\left(x+1\right)+60\left(x+2\right)+105\left(x+4\right)+420\cdot6=0\)

<=> \(28x+28+60x+120+105x+420+2520=0\)

<=> \(28x+60x+105x=-28-120-420-2520\)

<=> \(193x=-3088\)

<=> \(x=\dfrac{-3088}{193}\)

\(x=-16\)

d. \(\dfrac{x-342}{15}+\dfrac{x-323}{17}+\dfrac{x-300}{19}+\dfrac{x-273}{21}=10\)

<=> \(6783\left(x-342\right)+5985\left(x-323\right)+5355\left(x-300\right)+4845\left(x-273\right)=101745\cdot10\)

<=> \(6783x-2319786+5985x-1933155+5355x-1606500+4845x-1322685=1017450\)

<=> \(6783x+5985x+5355x+4845x=1017450+2319786+1933155+1606500+1322685\)

<=> \(22968x=8199576\)

<=> \(x=\dfrac{8199576}{22968}\)

\(x=357\)

4 tháng 2 2018

Đề là giải PT nha các bn

24: 

\(\Leftrightarrow\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+6}=\dfrac{1}{8}\)

\(\Leftrightarrow\left(x+2\right)\left(x+6\right)=8\left(x+6\right)-8\left(x+2\right)\)

\(\Leftrightarrow x^2+8x+12=8x+48-8x-16=32\)

=>(x+10)(x-2)=0

=>x=-10 hoặc x=2

25: \(\Leftrightarrow\dfrac{\left(x+1\right)^2+1}{x+1}+\dfrac{\left(x+4\right)^2+4}{x+4}=\dfrac{\left(x+2\right)^2+2}{x+2}+\dfrac{\left(x+3\right)^2+3}{x+3}\)

\(\Leftrightarrow x+1+\dfrac{1}{x+1}+x+4+\dfrac{4}{x+4}=x+2+\dfrac{2}{x+2}+x+3+\dfrac{3}{x+3}\)

\(\Leftrightarrow\dfrac{1}{x+1}+\dfrac{4}{x+4}=\dfrac{2}{x+2}+\dfrac{3}{x+3}\)

\(\Leftrightarrow x+5=0\)

hay x=-5

7 tháng 6 2017

giải pt sau

g) 11+8x-3=5x-3+x

\(\Leftrightarrow\) 8x + 8 = 6x - 3

<=> 8x-6x = -3 - 8

<=> 2x = -11

=> x=-\(\dfrac{11}{2}\)

Vậy tập nghiệm của PT là : S={\(-\dfrac{11}{2}\)}

h)4-2x+15=9x+4-2x

<=> 19 - 2x = 7x + 4

<=> -2x - 7x = 4 - 19

<=> -9x = -15

=> x=\(\dfrac{15}{9}=\dfrac{5}{3}\)

Vậy tập nghiệm của pt là : S={\(\dfrac{5}{3}\)}

g)\(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=\dfrac{5}{3}+2x\)

<=> \(\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{5.2+6.2x}{6}\)

<=> 9x + 6 - 3x + 1 = 10 + 12x

<=> 6x + 7 = 10 + 12x

<=> 6x -12x = 10-7

<=> -6x = 3

=> x= \(-\dfrac{1}{2}\)

Vậy tập nghiệm của PT là : S={\(-\dfrac{1}{2}\)}

\(h,\dfrac{x+4}{5}-x+4=\dfrac{4x+2}{5}-5\)

<=> \(\dfrac{x+4-5\left(x+4\right)}{5}=\dfrac{4x+2-5.5}{5}\)

<=> x + 4 - 5x - 20 = 4x + 2 - 25

<=> x - 5x - 4x = 2-25-4+20

<=> -8x = -7

=> x= \(\dfrac{7}{8}\)

Vậy tập nghiệm của PT là S={\(\dfrac{7}{8}\)}

\(i,\dfrac{4x+3}{5}-\dfrac{6x-2}{7}=\dfrac{5x+4}{3}+3\)

<=> \(\dfrac{21\left(4x+3\right)}{105}\)-\(\dfrac{15\left(6x-2\right)}{105}\)=\(\dfrac{35\left(5x+4\right)+3.105}{105}\)

<=> 84x + 63 - 90x + 30 = 175x + 140 + 315

<=> 84x - 90x - 175x = 140 + 315 - 63 - 30

<=> -181x = 362

=> x = -2

Vậy tập nghiệm của PT là : S={-2}

K) \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)

<=> \(\dfrac{5\left(5x+2\right)}{30}-\dfrac{10\left(8x-1\right)}{30}=\dfrac{6\left(4x+2\right)-150}{30}\)

<=> 25x + 10 - 80x - 10 = 24x + 12 - 150

<=> -55x = 24x - 138

<=> -55x - 24x = -138

=> -79x = -138

=> x=\(\dfrac{138}{79}\)

Vậy tập nghiệm của PT là S={\(\dfrac{138}{79}\)}

m) \(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{x+7}{15}\)

<=> \(\dfrac{3\left(2x-1\right)-5\left(x-2\right)}{15}=\dfrac{x+7}{15}\)

<=> 6x - 3 - 5x + 10 = x+7

<=> x + 7 = x+7

<=> 0x = 0

=> PT vô nghiệm

Vậy S=\(\varnothing\)

n)\(\dfrac{1}{4}\left(x+3\right)=3-\dfrac{1}{2}\left(x+1\right)-\dfrac{1}{3}\left(x+2\right)\)

<=> \(\dfrac{1}{4}x+\dfrac{3}{4}=3-\dfrac{1}{2}x-\dfrac{1}{2}-\dfrac{1}{3}x-\dfrac{2}{3}\)

<=> \(\dfrac{1}{4}x+\dfrac{1}{2}x+\dfrac{1}{3}x=3-\dfrac{1}{2}-\dfrac{2}{3}-\dfrac{3}{4}\)

<=> \(\dfrac{13}{12}x=\dfrac{13}{12}\)

=> x= 1

Vậy S={1}

p) \(\dfrac{x}{3}-\dfrac{2x+1}{6}=\dfrac{x}{6}-6\)

<=> \(\dfrac{2x-2x+1}{6}=\dfrac{x-36}{6}\)

<=> 2x -2x + 1= x-36

<=> 2x-2x-x = -37

=> x = 37

Vậy S={37}

q) \(\dfrac{2+x}{5}-0,5x=\dfrac{1-2x}{4}+0,25\)

<=> \(\dfrac{4\left(2+x\right)-20.0,5x}{20}=\dfrac{5\left(1-2x\right)+20.0,25}{20}\)

<=> 8 + 4x - 10x = 5 - 10x + 5

<=> 4x-10x + 10x = 5+5-8

<=> 4x = 2

=> x= \(\dfrac{1}{2}\)

Vậy S={\(\dfrac{1}{2}\)}

7 tháng 6 2017

g) \(11+8x-3=5x-3+x\)

\(\Leftrightarrow8+8x=6x-3\)

\(\Leftrightarrow8x-6x=-3-8\)

\(\Leftrightarrow2x=-11\)

\(\Leftrightarrow x=-\dfrac{11}{2}\)

h, \(4-2x+15=9x+4-2x\)

\(\Leftrightarrow-2x-9x+2x=4-4-15\)

\(\Leftrightarrow-9x=-15\)

\(\Leftrightarrow x=\dfrac{-15}{-9}=\dfrac{5}{3}\)

13 tháng 2 2018

a:

\(\dfrac{3\left(2x+1\right)}{4}-5-\dfrac{3x+2}{10}=\dfrac{2\left(3x-1\right)}{5}\)

\(\Leftrightarrow\dfrac{15\left(2x+1\right)-100-2\left(3x+2\right)}{20}=\dfrac{8\left(3x-1\right)}{20}\)

\(\Leftrightarrow15\left(2x+1\right)-100-2\left(3x+2\right)=8\left(3x-1\right)\)

\(\Leftrightarrow30x+15-100-6x+4=24x-8\)\(\Leftrightarrow30x-6x-24x=100-4-8\)

\(\Leftrightarrow0x=88\)

Vậy pt vô nghiệm

b:

\(\dfrac{x-15}{23}+\dfrac{x-23}{15}-2=0\)

\(\Leftrightarrow\dfrac{x-15}{23}+\dfrac{x-23}{15}=2\)

\(\Leftrightarrow\dfrac{x-15}{23}-1+\dfrac{x-23}{15}-1=2-2\)

\(\Leftrightarrow\dfrac{x-15-23}{23}+\dfrac{x-23-15}{15}=0\)

\(\Leftrightarrow\dfrac{x-38}{23}+\dfrac{x-23}{15}=0\)

\(\Leftrightarrow\left(x+38\right)\left(\dfrac{1}{23}+\dfrac{1}{15}\right)=0\)

\(\dfrac{1}{23}+\dfrac{1}{15}\ne0\) nên x + 38 =0 \(\Leftrightarrow x=-38\)

Vậy tập nghiện của pt S= {-38}

c:

\(\dfrac{3\left(2x+1\right)}{4}-\dfrac{5x+3}{6}+\dfrac{x+1}{3}=x+\dfrac{7}{12}\)

\(\Leftrightarrow\dfrac{9\left(2x+1\right)-2\left(5x+3\right)+4\left(x+1\right)}{12}=\dfrac{12x+7}{12}\)

\(\Leftrightarrow9\left(2x+1\right)-2\left(5x+3\right)+4\left(x+1\right)=12x+7\)

\(\Leftrightarrow18x+9-10x-6+4x+4=12x+7\)

\(\Leftrightarrow18x-10x+4x-12x=7-9+6-4\)

\(\Leftrightarrow0x=0\)

Vậy pt vô số nghiệm

26 tháng 7 2018

các bn giúp mik với!! vài câu cx được

a: \(\Leftrightarrow-12x-4=8x-2-8-6x\)

=>-12x-4=2x-10

=>-14x=-6

hay x=3/7

b: \(\Leftrightarrow3\left(5x-3\right)-2\left(5x-1\right)=-4\)

=>15x-9-10x+2=-4

=>5x-7=-4

=>5x=3

hay x=3/5(loại)

c: \(\Leftrightarrow x^2-4+3x+3=3+x^2-x-2\)

\(\Leftrightarrow x^2+3x-1=x^2-x+1\)

=>4x=2

hay x=1/2(nhận)

a: \(=\dfrac{3x}{5\left(x+y\right)}-\dfrac{x}{10\left(x-y\right)}\)

\(=\dfrac{6x\left(x-y\right)-x\left(x+y\right)}{10\left(x-y\right)\cdot\left(x+y\right)}\)

\(=\dfrac{6x^2-6xy-x^2-xy}{10\left(x-y\right)\left(x+y\right)}=\dfrac{5x^2-7xy}{10\left(x-y\right)\left(x+y\right)}\)

b: \(=\dfrac{7}{2\left(2x-3\right)\left(2x+3\right)}+\dfrac{1}{x\left(2x+3\right)}-\dfrac{1}{2\left(2x-3\right)}\)

\(=\dfrac{7x+2\left(2x-3\right)-x\left(2x+3\right)}{2x\left(2x+3\right)\left(2x-3\right)}\)

\(=\dfrac{7x+4x-6-2x^2-3x}{2x\left(2x+3\right)\left(2x-3\right)}\)

\(=\dfrac{-2x^2-6}{2x\left(2x+3\right)\left(2x-3\right)}=\dfrac{-x^2-3}{x\left(2x+3\right)\left(2x-3\right)}\)

c: \(=\dfrac{5}{x+1}+\dfrac{10}{x^2-x+1}-\dfrac{15}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{5x^2-5x+5+10x+10-15}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{5x^2+5x}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5x}{x^2-x+1}\)