K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2018

1) ĐKXĐ: \(x\ge0\)

\(\sqrt{x}=2\sqrt{2}\Rightarrow x=8\left(tmđkxđ\right)\)

2) ĐKXĐ: \(x\ge-1\)

\(\sqrt{\frac{x+1}{2}}=\frac{\sqrt{5}}{2}\)

\(\Leftrightarrow\frac{x+1}{2}=\frac{5}{4}\)

\(\Leftrightarrow2x+2=5\Leftrightarrow x=\frac{3}{2}\left(TMĐKXĐ\right)\)

3 tháng 11 2018

1, 

\(\sqrt{x}=2\sqrt{2}\)

=> \(\left(\sqrt{x}\right)=\left(2\sqrt{2}\right)^2\)

=> \(x=8\)

2.

\(\sqrt{\frac{x+1}{2}}=\frac{\sqrt{5}}{2}\)

=> \(\left(\sqrt{\frac{x+1}{2}}\right)=\left(\frac{\sqrt{5}}{2}\right)^2\)

=>  \(\frac{x+1}{2}=\frac{5}{4}\)

=> 4 ( x + 1 ) = 5.2

=> 4x + 4 = 10

=> 4x = 6

=. x = \(\frac{3}{2}\)

25 tháng 11 2019

1.

a) \(x-4\sqrt{x}=0\)

\(\Rightarrow\sqrt{x}.\left(\sqrt{x}-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\sqrt{x}=0+4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\sqrt{x}=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)

Vậy \(x\in\left\{0;16\right\}.\)

b) \(\left|\frac{3}{5}\sqrt{x}-\frac{1}{20}\right|-\frac{3}{4}=\frac{1}{5}\)

\(\Rightarrow\left|\frac{3}{5}\sqrt{x}-\frac{1}{20}\right|=\frac{1}{5}+\frac{3}{4}\)

\(\Rightarrow\left|\frac{3}{5}\sqrt{x}-\frac{1}{20}\right|=\frac{19}{20}.\)

\(\Rightarrow\left[{}\begin{matrix}\frac{3}{5}\sqrt{x}-\frac{1}{20}=\frac{19}{20}\\\frac{3}{5}\sqrt{x}-\frac{1}{20}=-\frac{19}{20}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{3}{5}\sqrt{x}=1\\\frac{3}{5}\sqrt{x}=-\frac{9}{10}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\sqrt{x}=1:\frac{3}{5}\\\sqrt{x}=\left(-\frac{9}{10}\right):\frac{3}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=\frac{5}{3}\\\sqrt{x}=-\frac{3}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{25}{9}\\x\in\varnothing\end{matrix}\right.\)

Vậy \(x=\frac{25}{9}.\)

Câu c) làm tương tự như câu b).

Chúc bạn học tốt!

30 tháng 7 2016

\(a,\sqrt{x}+\sqrt{x-5}\le\sqrt{5}\)

ĐKXĐ: \(\sqrt{x}\ge0;\sqrt{x-5}\ge0=>x\ge5\)

\(=>\left(\sqrt{x}+\sqrt{x-5}\right)^2\le\left(\sqrt{5}\right)^2\)

\(=>\left(\sqrt{x}\right)^2+2.\sqrt{x}.\sqrt{x-5}+\left(\sqrt{x-5}\right)^2\le5\)

\(=>x+2.\sqrt{x.\left(x-5\right)}+x-5\le5\)

\(=>2x+2\sqrt{x^2-5x}-5\le5=>2x+2\sqrt{x^2-5x}-10\le0\)

\(=>2\left(x+\sqrt{x^2-5x}\right)\le10=>x+\sqrt{x^2-5x}\le5\)

\(=>\sqrt{x^2-5x}\le5-x=>\left(\sqrt{x^2-5x}\right)^2\le\left(5-x\right)^2\)

\(=>x^2-5x\le25-10x+x^2=>25-10x+x^2-x^2+5x\ge0\)

\(=>25-5x\ge0=>5x\le25=>x\le5\)

Mà theo ĐKXĐ: \(x\ge5\) nên x chỉ có thể bằng 5

Vậy x=5

\(b,\frac{x+3}{x+2}<\frac{x+4}{x+5}=>\frac{\left(x+3\right)\left(x+5\right)}{\left(x+2\right)\left(x+5\right)}<\frac{\left(x+4\right)\left(x+2\right)}{\left(x+5\right)\left(x+2\right)}\) (ĐKXĐ: \(x\notin\left\{-5;-2\right\}\))

\(=>\left(x+3\right)\left(x+5\right)<\left(x+4\right)\left(x+2\right)=>x^2+8x+15\)\(<\)\(x^2+6x\)\(+8\)

\(=>x^2+6x+8-x^2-8x-15>0=>-2x-7>0=>-2x>7=>x>-\frac{7}{2}\)

\(c,3^{x^2-x-6}<1=3^0=>x^2-x-6<0\)

\(=>x^2+2x-3x-6<0=>x\left(x+2\right)-3\left(x+2\right)<0=>\left(x+2\right)\left(x-3\right)<0\)

Vì x+2 > x-3

=>x+2 > 0 và x-3 < 0

=>x > -2 và x < 3

=>-2 < x < 3

Vậy.............

30 tháng 7 2016

- Oa, Phúc giỏi vãi đái ~~~

15 tháng 10 2016

a) Để A thuộc Z => \(\sqrt{x}\)- 3thuộc ước của 2 => \(\sqrt{x}\)- 3 thuộc -1; -2;1;2

=> căn x = 1 hoặc 2

câu b làm tương tự

29 tháng 7 2016

ôi cha dễ quá BÌnh thẳng lên thôi

\(\sqrt{\left(x+1\right)^2}=\left(x-5\right)^2\)

\(\Leftrightarrow x+1=x^2-10x+25\)

\(\Leftrightarrow-x^2+11x-24=0\)

\(\Leftrightarrow-\left(x^2-11x+24\right)=0\)

\(\Leftrightarrow x^2-8x-3x+24=0\)

\(\Leftrightarrow x\left(x-8\right)-3\left(x-8\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=8\end{cases}\left(tm\right)}\)

5 tháng 7 2016

Để \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\in Z\Leftrightarrow\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\in Z\)

\(\Leftrightarrow\frac{\sqrt{x}-3}{\sqrt{x}-3}+\frac{4}{\sqrt{x}-3}\in Z\Leftrightarrow1+\frac{4}{\sqrt{x}-3}\in Z\)

\(\Leftrightarrow\frac{4}{\sqrt{x}-3}\in Z\Rightarrow\sqrt{x}-3\inƯ\left(4\right)\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{2;4;1;5;-1;7\right\}\Rightarrow x\left\{4;16;1;25;1;49\right\}\)

Vậy \(x=\left\{1;4;16;25;49\right\}\)thì \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\in Z.\)

1 tháng 2 2017

\(\sqrt{x}+1\) chia hết cho \(\sqrt{x}-3\)

\(\sqrt{x}-3+3+1\) chia hết cho \(\sqrt{x}-3\)

\(\sqrt{x}-3+4\) chia hết cho \(\sqrt{x}-3\)

\(\Rightarrow4\) chia hết cho \(\sqrt{x}-3\)

\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left(1;-1;2;-2;4;-4\right)\)

Ta có bảng sau :

\(\sqrt{x}-3\)1-12-24-4
x164251491
27 tháng 2 2019

Tất cả sai hết! (kể cả boul,nếu thay x=-2 vào sẽ thấy vô lí).Không có đk xác định với đk bình phương sao làm được:

                                                    Lời giải

ĐKXĐ: \(7-x\ge0\Leftrightarrow x\le7\) (1)

Do \(VT\ge0\Rightarrow x-1\ge0\Leftrightarrow x\ge1\) (2)

Từ (1) và (2) suy ra \(1\le x\le7\)

Bình phương hai vế,ta có: \(\left(x-1\right)^2=7-x\Leftrightarrow x^2-2x+1=7-x\)

\(\Leftrightarrow x^2-x-6=0\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\left(L\right)\end{cases}}\)

Vậy \(x=3\)

 7 -x = x2-1

x2+ x - 8 = 0

x2+ 2x + 1 -9 =0

(x+ 1)2= 9

\(\orbr{\begin{cases}x+1=3\\x+1=-3\end{cases}}\)