Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-2}{x-1}=\frac{x+4}{x+7}\) ĐKXĐ: \(x\ne1;x\ne-7\)
\(\Rightarrow\left(x-2\right)\left(x+7\right)=\left(x-1\right)\left(x+4\right)\)
\(\Leftrightarrow x^2-2x+7x-14=x^2-x+4x-4\)
\(\Leftrightarrow x^2+5x-14=x^2+3x-4\)
\(\Leftrightarrow x^2-x^2+5x-3x=-4+14\)
\(\Leftrightarrow2x=10\)
\(\Leftrightarrow x=5\)( thỏa mãn điều kiện xác định)
vậy x=5
Ta có:\(\frac{x-2}{x-1}=\frac{x+4}{x+7}\)
\(\Rightarrow\left(x-2\right)\left(x-7\right)=\left(x-1\right)\left(x+4\right)\)
\(\Rightarrow x^2-9x+14=x^2+3x-4\)
\(\Rightarrow x^2-9x+14-x^2-3x+4=0\)
\(\Rightarrow18-12x=0\)
\(\Rightarrow x=\frac{18}{12}\)
\(\left|2x-1\right|=0\Rightarrow2x-1\le0\)
\(\left|3y-2\right|=0\Rightarrow3y-2\le0\)
\(\hept{\begin{cases}2x-1=0\\3y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{3}\end{cases}}\)
k nha
Do /2x - 1/ \(\ge\)0 và /3y - 2/\(\ge\)0
Mà: /2x - 1/ + /3y - 2/ = 0
=> /2x - 1/ = 0 và /3y - 2/ = 0
=> 2x - 1 = 0 và 3y - 2 = 0
=> x = \(\frac{1}{2}\)và y = \(\frac{2}{3}\)
a ) \(\frac{3x+1}{5y+2}=\frac{6x+3}{10y+6}\)
\(\Leftrightarrow\left(3x+1\right).\left(10y+6\right)=\left(5y+2\right).\left(6x+3\right)\)
\(\Leftrightarrow30xy+18x+10y+6=30xy+15y+12x+6\)
\(\Leftrightarrow6x-5y=0\)
kHÔNG CÓ X,Y THÕA MÃN
cÂU B TƯƠNG TỰ
6 là bội của n+1
=> 6 chia hết cho n+1
=> n+1 thuộc Ư(6)={-1,-2,-3,-6,1,2,3,6}
Ta có bảng :
n+1 | -1 | -2 | -3 | -6 | 1 | 2 | 3 | 6 |
n | -2 | -3 | -4 | -7 | 0 | 1 | 2 | 5 |
Vậy n={-7,-4,-3,-2,0,1,2,5}
Bài 1:
a)\(\frac{\left(0,8\right)^5}{\left(0,4\right)^6}=\frac{\left(0,2\cdot4\right)^5}{\left(0,2\cdot2\right)^6}=\frac{\left(0,2\right)^5\cdot\left(2^2\right)^5}{\left(0,2\right)^6\cdot2^6}=\frac{\left(0,2\right)^5\cdot2^{10}}{\left(0,2\right)^6\cdot2^6}=\frac{2^4}{0,2}=\frac{16}{\frac{2}{10}}=80\)
b)\(\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(1+2^{10}\right)}=\frac{2^{20}}{2^{12}}=256\)
Bài 2:
a)\(2^{x-1}=16\)
\(\Rightarrow2^{x-1}=2^4\)
\(\Rightarrow x-1=4\Rightarrow x=5\)
b)\(\left(x-1\right)^2=25\)
\(\Rightarrow\left(x-1\right)^2=5^2=\left(-5\right)^2\)
\(\Rightarrow x-1=5\) hoặc \(x-1=-5\)
\(\Rightarrow x=6\) hoặc \(x=-4\)
Vậy \(x=6\) hoặc \(x=-4\)
c)\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\)
\(\Rightarrow\left(x-1\right)^{x+2}-\left(x-1\right)^{x+6}=0\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\left[1-\left(x-1\right)^4\right]\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\left(x-1\right)^{x+2}=0\\1-\left(x-1\right)^4=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\1=\left(x-1\right)^4\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\\left(x-1\right)^4=\left(-1\right)^4=1^4\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x-1=1\\x-1=-1\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=2\\x=0\end{array}\right.\)
d)\(\left(x+20\right)^{100}+\left|y+4\right|=0\left(1\right)\)
Ta thấy: \(\begin{cases}\left(x+20\right)^{100}\ge0\\\left|y+4\right|\ge0\end{cases}\)
\(\Rightarrow\left(x+20\right)^{100}+\left|y+4\right|\ge0\left(2\right)\)
Từ (1) và (2) suy ra \(\begin{cases}\left(x+20\right)^{100}=0\\\left|y+4\right|=0\end{cases}\)
\(\Rightarrow\begin{cases}x+20=0\\y+4=0\end{cases}\)\(\Rightarrow\begin{cases}x=-20\\y=-4\end{cases}\)
a: k=-2/5
=>y=-2/5x
Khi x=-1 thì y=2/5
b: Khi y=3 thì -2/5x=3
hay x=3:(-2/5)=-3x5/2=-15/2
ôi cha dễ quá BÌnh thẳng lên thôi
\(\sqrt{\left(x+1\right)^2}=\left(x-5\right)^2\)
\(\Leftrightarrow x+1=x^2-10x+25\)
\(\Leftrightarrow-x^2+11x-24=0\)
\(\Leftrightarrow-\left(x^2-11x+24\right)=0\)
\(\Leftrightarrow x^2-8x-3x+24=0\)
\(\Leftrightarrow x\left(x-8\right)-3\left(x-8\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=8\end{cases}\left(tm\right)}\)