Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a) \(x-4\sqrt{x}=0\)
\(\Rightarrow\sqrt{x}.\left(\sqrt{x}-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\sqrt{x}=0+4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\sqrt{x}=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)
Vậy \(x\in\left\{0;16\right\}.\)
b) \(\left|\frac{3}{5}\sqrt{x}-\frac{1}{20}\right|-\frac{3}{4}=\frac{1}{5}\)
\(\Rightarrow\left|\frac{3}{5}\sqrt{x}-\frac{1}{20}\right|=\frac{1}{5}+\frac{3}{4}\)
\(\Rightarrow\left|\frac{3}{5}\sqrt{x}-\frac{1}{20}\right|=\frac{19}{20}.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{3}{5}\sqrt{x}-\frac{1}{20}=\frac{19}{20}\\\frac{3}{5}\sqrt{x}-\frac{1}{20}=-\frac{19}{20}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{3}{5}\sqrt{x}=1\\\frac{3}{5}\sqrt{x}=-\frac{9}{10}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\sqrt{x}=1:\frac{3}{5}\\\sqrt{x}=\left(-\frac{9}{10}\right):\frac{3}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=\frac{5}{3}\\\sqrt{x}=-\frac{3}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{25}{9}\\x\in\varnothing\end{matrix}\right.\)
Vậy \(x=\frac{25}{9}.\)
Câu c) làm tương tự như câu b).
Chúc bạn học tốt!
a) Điều kiện: x > 0
\(\sqrt{\left(1-2x\right)^2}=x\) => (1 - 2x)2 = x2 => 1 - 2x = x hoặc 1 - 2x = - x
+) 1 - 2x = x => 1 = 3x => x = 1/3 (Thỏa mãn)
+) 1 - 2x = - x => 1 = x (Thỏa mãn)
Vậy....
b) \(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}=\frac{x+1}{5}+\frac{x+1}{6}\)
=> \(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}-\frac{x+1}{5}-\frac{x+1}{6}=0\)
=> \(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)\left(x+1\right)=0\)
=> \(\frac{43}{60}\left(x+1\right)=0\)=> x + 1 = 0 => x = - 1
Vậy....
- Ta chứng minh bất đẳng thức phụ dưới đây: \(\frac{1}{\sqrt{x}\left(x+1\right)}=\frac{\sqrt{x}}{x\left(x+1\right)}=\sqrt{x}\left(\frac{1}{x}-\frac{1}{x+1}\right)=\sqrt{x}\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x+1}}\right)\)\(=\left(1+\frac{\sqrt{x}}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)< 2\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\)
Áp dụng : \(\frac{1}{\sqrt{1}.2}< 2.\left(1-\frac{1}{\sqrt{2}}\right)\)
\(\frac{1}{\sqrt{2}.3}< 2.\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)\)
...................................
\(\frac{1}{\sqrt{2015}.2016}< 2.\left(\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)\)
Cộng các BĐT trên với nhau được : \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}}< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)=2\left(1-\frac{1}{\sqrt{2016}}\right)< 2\left(1-\frac{1}{\sqrt{2025}}\right)=\frac{88}{45}\)
Từ đó suy ra đpcm
Cái ............... là gì vậy bn
a) \(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\frac{1}{3}:2x=\frac{-21}{4}\)
\(2x=\frac{-4}{63}\)
\(x=\frac{2}{63}\)
b) \(\left(3x-\frac{1}{4}\right)\left(x+\frac{1}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-\frac{1}{4}=0\\x+\frac{1}{2}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-1}{2}\end{cases}}\)
Vậy.........
\(a,2\sqrt{x}+3=0\)
\(\Leftrightarrow2\sqrt{x}=-3\)
\(\Leftrightarrow\sqrt{x}=-\frac{3}{2}\)( loại )
\(b,\frac{5}{12}\sqrt{x}-\frac{1}{6}=\frac{1}{3}\Leftrightarrow\frac{5}{12}\sqrt{x}=\frac{1}{2}\Leftrightarrow\sqrt{x}=\frac{6}{5}\Leftrightarrow x=\frac{36}{25}\)
\(c,\sqrt{x+3}+3=0\Leftrightarrow\sqrt{x+3}=-3\)( loại )
1) ĐKXĐ: \(x\ge0\)
\(\sqrt{x}=2\sqrt{2}\Rightarrow x=8\left(tmđkxđ\right)\)
2) ĐKXĐ: \(x\ge-1\)
\(\sqrt{\frac{x+1}{2}}=\frac{\sqrt{5}}{2}\)
\(\Leftrightarrow\frac{x+1}{2}=\frac{5}{4}\)
\(\Leftrightarrow2x+2=5\Leftrightarrow x=\frac{3}{2}\left(TMĐKXĐ\right)\)
1,
\(\sqrt{x}=2\sqrt{2}\)
=> \(\left(\sqrt{x}\right)=\left(2\sqrt{2}\right)^2\)
=> \(x=8\)
2.
\(\sqrt{\frac{x+1}{2}}=\frac{\sqrt{5}}{2}\)
=> \(\left(\sqrt{\frac{x+1}{2}}\right)=\left(\frac{\sqrt{5}}{2}\right)^2\)
=> \(\frac{x+1}{2}=\frac{5}{4}\)
=> 4 ( x + 1 ) = 5.2
=> 4x + 4 = 10
=> 4x = 6
=. x = \(\frac{3}{2}\)
\(a,\sqrt{x}+\sqrt{x-5}\le\sqrt{5}\)
ĐKXĐ: \(\sqrt{x}\ge0;\sqrt{x-5}\ge0=>x\ge5\)
\(=>\left(\sqrt{x}+\sqrt{x-5}\right)^2\le\left(\sqrt{5}\right)^2\)
\(=>\left(\sqrt{x}\right)^2+2.\sqrt{x}.\sqrt{x-5}+\left(\sqrt{x-5}\right)^2\le5\)
\(=>x+2.\sqrt{x.\left(x-5\right)}+x-5\le5\)
\(=>2x+2\sqrt{x^2-5x}-5\le5=>2x+2\sqrt{x^2-5x}-10\le0\)
\(=>2\left(x+\sqrt{x^2-5x}\right)\le10=>x+\sqrt{x^2-5x}\le5\)
\(=>\sqrt{x^2-5x}\le5-x=>\left(\sqrt{x^2-5x}\right)^2\le\left(5-x\right)^2\)
\(=>x^2-5x\le25-10x+x^2=>25-10x+x^2-x^2+5x\ge0\)
\(=>25-5x\ge0=>5x\le25=>x\le5\)
Mà theo ĐKXĐ: \(x\ge5\) nên x chỉ có thể bằng 5
Vậy x=5
\(b,\frac{x+3}{x+2}<\frac{x+4}{x+5}=>\frac{\left(x+3\right)\left(x+5\right)}{\left(x+2\right)\left(x+5\right)}<\frac{\left(x+4\right)\left(x+2\right)}{\left(x+5\right)\left(x+2\right)}\) (ĐKXĐ: \(x\notin\left\{-5;-2\right\}\))
\(=>\left(x+3\right)\left(x+5\right)<\left(x+4\right)\left(x+2\right)=>x^2+8x+15\)\(<\)\(x^2+6x\)\(+8\)
\(=>x^2+6x+8-x^2-8x-15>0=>-2x-7>0=>-2x>7=>x>-\frac{7}{2}\)
\(c,3^{x^2-x-6}<1=3^0=>x^2-x-6<0\)
\(=>x^2+2x-3x-6<0=>x\left(x+2\right)-3\left(x+2\right)<0=>\left(x+2\right)\left(x-3\right)<0\)
Vì x+2 > x-3
=>x+2 > 0 và x-3 < 0
=>x > -2 và x < 3
=>-2 < x < 3
Vậy.............
- Oa, Phúc giỏi vãi đái ~~~