Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) 24 ⋮ x; 18 ⋮ x nên x ƯC(24; 18)
24 = 2³.3
18 = 2.3²
⇒ ƯCLN(24; 18) = 2.3 = 6
⇒ x ∈ ƯC(24; 18) = Ư(6) = {1; 2; 3; 6}
Mà x ≥ 9
⇒ Không tìm được x thỏa mãn yêu cầu
B) 12 ⋮ x; 20 ⋮ x nên x ∈ ƯC(12; 20)
12 = 2².3
20 = 2².5
⇒ ƯCLN(12; 20) = 2² = 4
⇒ x ∈ ƯC(12; 20) = Ư(4) = {1; 2; 4}
Mà x ≥ 5
⇒ Không tìm được x thỏa mãn yêu cầu
C) 24 ⋮ x; 36 ⋮ x và x lớn nhất
⇒ x = ƯCLN(24; 36)
24 = 2³.3
36 = 2².3²
⇒ x = ƯCLN(24; 36) = 2².3 = 12
D) 64 ⋮ x; 48 ⋮ x nên x ∈ ƯC(64; 48)
64 = 2⁶
48 = 2⁴.3
⇒ ƯCLN(64; 48) = 2⁴ = 16
⇒ x ∈ ƯC(64; 48) = Ư(16) = {1; 2; 4; 8; 16}
Mà 3 ≤ x 20
⇒ x ∈ {4; 8; 16}
Vì x⋮6;x⋮24;x⋮40
→xϵ BC[6;24;40]
TA CÓ:
6=2.3
24=23.3
40=23.5
→BCNN[6;24;40]=23.3.5=60
BC[6;24;40]=B[60]={1;2;3;4;5;6;10;12;15;20;30;60}
hay x ϵ {1;2;3;4;5;6;10;12;15;20;30;60}
CÂU SAU TRÌNH BÀY NHƯ THẾ NHƯNG LÀ ƯỚC THÔI !
Hôm nay olm.vn sẽ hướng dẫn các em cách giải dạng bài như này.
Gặp những dạng toán nâng cao như này thì các em cần tìm \(x\) dưới dạng tổng quát em nhé. Học toán tập hợp là để giải toán dạng này đó em
Bài 3: a, 12 + 36 + 24 + \(x\) = 72 + \(x\)
72 + \(x\) ⋮ 6 ⇔ \(x\) ⋮ 6 ⇒ \(x\in\) A = { \(x\in\) Z/ \(x\) = 6k; k \(\in\) Z}
b, 72 + \(x\) không chia hết cho 6 ⇒ \(x\) không chia hết cho 6
⇒ \(x\) \(\in\) A = { \(x\) \(\in\) z/ \(x\) = 6k + q; k \(\in\) Z; q \(\in\) Z; q \(\ne\)0}
Bài 4: \(x\).9 ⋮3 vì 9 ⋮ 3 ⇒ \(x.9\) ⋮ 3 ∀ \(x\) \(\in\) Z Vậy \(x\) \(\in\) Z
Ta có: 3 chia hết cho 3; 15 chia hết cho 3 ; 87 chia hết cho 3; 12 chia hết cho 3
==>(3+15+87+12) chia hết cho 3
Do đó : Để S1 chia hết cho 3 thì x cũng chia hết cho 3
Ta có: 25 chia hết cho 5; 70 chia hết cho 5; 95 chia hết cho 5
==> (25+70+95) chia hết cho 5
Do đó : Để S3 chia hết cho 5 thì x cũng chia hết cho 5
Mấy câu còn lại làm tương tự nhé
a, Vì : 24 \(⋮\)x , 36 \(⋮\)x , 160 \(⋮\)x và x lớn nhất
=> x = ƯCLN(24,36,160)
Ta có :
24 = 23 . 3
36 = 22 . 32
160 = 25 . 5
ƯCLN(24,36,160) = 22 = 4
Vậy x = 4
b, Vì 15 \(⋮\)x , 20 \(⋮\)x , 35 \(⋮\)x và x > 3
=> x \(\in\) ƯC(15,20,35)
Ư(15) = { 1;3;5;15 }
Ư(20) = { 1;2;4;5;10;20 }
Ư(35) = { 1;5;7;35 }
ƯC(15,20,35) = { 1;5 }
Mà : x > 3
=> x = 5
Vậy x = 5
c, Vì : 91 \(⋮\)x , 26 \(⋮\)x và 10 < x < 30
=> x \(\in\) ƯC(91,26)
Ư(91) = { 1;7;13;91 }
Ư(26) = { 1;2;13;26 }
ƯC(91,26) = { 1;13 }
Mà : 10 < x < 30
=> x = 13
Vậy x = 13
d, Vì : 10 \(⋮\)( 3x + 1 )
=> 3x + 1 \(\in\) Ư(10)
Mà : Ư(10) = { 1;2;5;10 }
=> 3x + 1 \(\in\) { 1;10 }
+) 3x + 1 = 1 => 3x = 0 => x = 0
+) 3x + 1 = 10 => 3x = 3 => x = 1
Vậy x \(\in\) { 0;1 }