K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

\(x^2+2y^2+z^2-2\left(xy+2y+2z+8\right)=0\)

\(pt\Leftrightarrow x^2+2y^2+z^2-2xy+4y+4z+16=0\)

\(\Leftrightarrow x^2-2xy+y^2+y^2+4y+4+z^2+4z+4+8=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y+2\right)^2+\left(z+2\right)^2+8=0\)

Dễ thấy: \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y+2\right)^2\ge0\\\left(z+2\right)^2\ge0\end{cases}}\)

\(\Rightarrow\left(x-y\right)^2+\left(y+2\right)^2+\left(z+2\right)^2\ge0\)

\(\Rightarrow\left(x-y\right)^2+\left(y+2\right)^2+\left(z+2\right)^2+8>8\)

Vô nghiệm

10 tháng 7 2023

0,2:x=1,03+3,97

 

 

a: A=-2xy+xy+xy^2=-xy+xy^2

Bậc là 3

b: \(B=xy^2z+2xy^2z-3xy^2z+xy^2z-xyz=-xyz+xy^2z\)

Bậc là 4

c: \(C=4x^2y^3-x^2y^3+x^4+6x^4-2x^2=3x^2y^3+7x^4-2x^2\)

Bậc là 5

d: \(D=\dfrac{3}{4}xy^2-\dfrac{1}{2}xy^2+xy=\dfrac{1}{4}xy^2+xy\)

bậc là 3

e: \(E=2x^2-4x^2+3z^4-z^4-3y^3+2y^3\)

=-2x^2+2z^4-y^3

Bậc là 4

f: \(=3xy^2z+xy^2z+2xy^2z-4xyz=6xy^2z-4xyz\)

Bậc là 4

3 tháng 6 2017

a,\(x^2+2y^2+z^2-2xy-2y+2z+2=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(z^2+2x+1\right)=0\)\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(z+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z+1\right)^1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-y=0\\y-1=0\\z+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\y=1\\z=-1\end{matrix}\right.\)

3 tháng 6 2017

PTNN là gì bạn ?

11 tháng 3 2019

5(x+y)2+3(x-y)2=8x2+4xy+8y2=4(2x2+xy+2z2)>=5(x+y)2

=> \(\sqrt{2x^2+xy+2y^2}\ge\sqrt{\frac{5\left(x+y\right)^2}{4}}\)\(\frac{\sqrt{5}\left(x+y\right)}{2}\)

Tương tự. Cộng lại là ra nha. Dấu = xảy ra <=> x=y=z=1/3