Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2y^2+z^2-2\left(xy+2y+2z+8\right)=0\)
\(pt\Leftrightarrow x^2+2y^2+z^2-2xy+4y+4z+16=0\)
\(\Leftrightarrow x^2-2xy+y^2+y^2+4y+4+z^2+4z+4+8=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y+2\right)^2+\left(z+2\right)^2+8=0\)
Dễ thấy: \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y+2\right)^2\ge0\\\left(z+2\right)^2\ge0\end{cases}}\)
\(\Rightarrow\left(x-y\right)^2+\left(y+2\right)^2+\left(z+2\right)^2\ge0\)
\(\Rightarrow\left(x-y\right)^2+\left(y+2\right)^2+\left(z+2\right)^2+8>8\)
Vô nghiệm
5(x+y)2+3(x-y)2=8x2+4xy+8y2=4(2x2+xy+2z2)>=5(x+y)2
=> \(\sqrt{2x^2+xy+2y^2}\ge\sqrt{\frac{5\left(x+y\right)^2}{4}}\)= \(\frac{\sqrt{5}\left(x+y\right)}{2}\)
Tương tự. Cộng lại là ra nha. Dấu = xảy ra <=> x=y=z=1/3