Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x+y=1000\\\dfrac{15}{100}x+\dfrac{17}{100}y=1162\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{15}{100}x+\dfrac{15}{100}y=150\\\dfrac{15}{100}x+\dfrac{17}{100}y=1162\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{2}{100}y=150-1162=-1012\\x+y=1000\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=50600\\x=1000-50600=-49600\end{matrix}\right.\)
=1000 + 10000 x 9999999 x 12345664929 x 11111112321631353 +5050.
900+100=1000
700+x=1000
x= 1000-700
x= 300
ai k mình mình k lại
Lời giải:
Ta có:
$(x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(x+z)$
$\Leftrightarrow 1^3=1+3(x+y)(y+z)(x+z)$
$\Leftrightarrow (x+y)(y+z)(x+z)=0$
$\Rightarrow x+y=0$ hoặc $y+z=0$ hoặc $x+z=0$
Không mất tổng quát giả sử $x+y=0$
Kết hợp với $x+y+z=1\Rightarrow z=1$
$\Rightarrow x^2+y^2=0$. Kết hợp với $x+y=0$ suy ra $x=y=0$
Do đó: $M=0^{10}+0^{100}+1^{1000}=1$
TH $y+z=0$ và $z+x=0$ ta cũng thu được điều tương tự
Vậy $M=1$
ĐKXĐ : \(x\ne0\)
Ta có : \(\left(x-1\right)\left(\frac{600}{x}+30\right)=600\)
=> \(600-\frac{600}{x}+30x-30=600\)
=> \(30x-\frac{600}{x}-30=0\)
=> \(30x^2-30x-600=0\)
=> \(\Delta=b^2-4ac=\left(-30\right)^2-4.30.\left(-600\right)=72900\)
Ta thấy denta > 0 nên phương trình có 2 nghiệm phân biệt :
\(\left\{{}\begin{matrix}x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{30-\sqrt{72900}}{2.30}=-4\\x_2=\frac{30+\sqrt{72900}}{2.30}=5\end{matrix}\right.\)
Vậy ...
x+600=1000-100
x+600=900
x=900-600
x=300
mình trả lời rồi tk mình nhé
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
=>x=300