Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-\frac{y^2}{3}=x^2+\frac{y^2}{-5}\)nếu bạn chép sai đề => kq sài vô lý
sua de lam tiep
\(\left(xy\right)^{10}=1024=2^{10}=>xy=2=>\left(xy\right)^2=4\)
\(\frac{x^2-y^2}{3}=\frac{x^2+y^2}{-5}=\frac{2x^2}{-2}=-x^2\)
\(\Leftrightarrow\frac{x^2-y^2}{3}=-x^2=>4x^2-y^2=0\)\(\Leftrightarrow4x^2=y^2\Leftrightarrow4x^2.y^2=y^2.y^2=>y^4=4.4=16=2^4=>y=!2!\)
KL:
y=!2!
x=!1!
(x,y)=(-1,-2); (1,2)
\(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}=\frac{y^2+x^2+y^2-x^2}{3+5}=\frac{2y^2}{8}=\frac{y^2}{4}\)
\(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}=\frac{\left(x^2+y^2\right)-\left(y^2-x^2\right)}{5-3}=\frac{2x^2}{2}=x^2\)
\(\frac{y^2}{4}=x^2\Rightarrow\frac{y^{10}}{1024}=\frac{x^{10}}{1}\Rightarrow x^{20}=\frac{x^{10}.y^{10}}{1024}=\frac{1024}{1024}=1\)
=>x=-1;1
xét x=-1=>y2=4=>y=-2;2
xét x=1=>y2=4=>y=-2;2
Vậy (x;y)=(-1;-2);(-1;2);(1;-2);(1;2)
\(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}=\frac{y^2+x^2+y^2-x^2}{3+5}=\frac{2y^2}{8}=\frac{y^2}{4}\)
\(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}=\frac{\left(x^2+y^2\right)-\left(y^2-x^2\right)}{5-3}=\frac{2x^2}{2}=x^2\)
\(\frac{y^2}{4}=x^2\Rightarrow\frac{y^{10}}{1024}=\frac{x^{10}}{1}\Rightarrow x^{20}=\frac{x^{10}.y^{10}}{1024}=\frac{1024}{1024}=1\)
=>x=-1;1
xét x=-1=>y2=4=>y=-2;2
xét x=1=>y2=4=>y=-2;2
Vậy (x;y)=(-1;-2);(-1;2);(1;-2);(1;2)
Áp dụng tính chất của dãy tỉ số bằng nhau có: \(\frac{y^2-x^2}{3}=\frac{x^2+y^2}{5}=\frac{\left(y^2-x^2\right)+\left(x^2+y^2\right)}{3+5}=\frac{\left(y^2-x^2\right)-\left(x^2-y^2\right)}{3-5}\)
=> \(\frac{2y^2}{8}=\frac{-2x^2}{-2}\Rightarrow\frac{y^2}{4}=x^2\) => y2 = 4x2
Ta có x10.y10 = x10. (4x2)5 = 1024.x20 = 1024 => x20 = 1 => x =1 hoặc x = -1
=> y2 = 4 => y = 2 hoặc y = -2
Vậy ...
Ta có:\(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}\Rightarrow5\left(y^2-x^2\right)=3\left(y^2+x^2\right)\Rightarrow5y^2-5x^2=3y^2+3x^2\Rightarrow2y^2=8x^2\Rightarrow y^2=4x^2\)
\(\Rightarrow\frac{y^2}{4}=\frac{x^2}{1}\Rightarrow\frac{y}{2}=\frac{x}{1}\)
Đặt \(\frac{x}{1}=\frac{y}{2}=k\Rightarrow x=k,y=2k\)
Lại có: \(x^{10}y^{10}=k^{10}.\left(2k\right)^{10}=k^{10}.1024k^{10}=1024k^{20}=1024\)
\(\Rightarrow k^{20}=1\Rightarrow k=\pm1\)
Với k = 1 => x = 1, y = 2
Với k = -1 => x = -1, y = -2
Vậy...