K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2023

\(\dfrac{x-1}{2021}+\dfrac{x-2}{2020}=\dfrac{x-5}{2017}+\dfrac{x-7}{2015}\\ \dfrac{x-1}{2021}+\dfrac{x-2}{2020}-2=\dfrac{x-5}{2017}+\dfrac{x-7}{2015}-2\\ \dfrac{x-1}{2021}+\dfrac{x-2}{2020}-1-1=\dfrac{x-5}{2017}+\dfrac{x-7}{2015}-1-1\\\left(\dfrac{x-1}{2021}-1\right)+\left(\dfrac{x-2}{2020}-1\right)=\left(\dfrac{x-5}{2017}-1\right)+\left(\dfrac{x-7}{2015}-1\right)\\ \dfrac{x-2022}{2021}+\dfrac{x-2022}{2020}=\dfrac{x-2022}{2017}+\dfrac{x-2022}{2015}\\ \dfrac{x-2022}{2021}+\dfrac{x-2022}{2020}-\dfrac{x-2022}{2017}-\dfrac{x-2022}{2015}=0\\ \left(x-2022\right)\left(\dfrac{1}{2021}+\dfrac{1}{2020}-\dfrac{1}{2017}-\dfrac{1}{2015}\right)=0\)

mà `(1/2021+1/2020-1/2017-1/2015 \ne 0`

nên `x-2022=0`

`x=2022`

26 tháng 3 2023

hơi lấn cấn ở khúc 2 vế đều trừ 2 rồi xuống dòng lại trừ 1 trừ1

14 tháng 3 2019

Ta có:\(\frac{3-x}{2021}+\frac{2020-x}{2019}+\frac{4033-x}{2017}+\frac{6042-x}{2015}=10\)

\(\Leftrightarrow\frac{3-x}{2021}-1+\frac{2020-x}{2019}-2+\frac{4033-x}{2017}-3+\frac{6042-x}{2015}-4=0\)

\(\Leftrightarrow\frac{3-x-2021}{2021}+\frac{2020-x-4038}{2019}+\frac{4033-x-6051}{2017}+\frac{6042-x-8060}{2015}=0\)

\(\Leftrightarrow\frac{-2018-x}{2021}+\frac{-2018-x}{2019}+\frac{-2018-x}{2017}+\frac{-2018-x}{2015}=0\)

\(\Leftrightarrow-\left(2018+x\right)\left(\frac{1}{2021}+\frac{1}{2019}+\frac{1}{2017}+\frac{1}{2015}\right)=0\)

\(\Leftrightarrow2018+x=0.Do\frac{1}{2021}+\frac{1}{2019}+\frac{1}{2017}+\frac{1}{2015}>0\)

\(\Leftrightarrow x=-2018\)

V...

4 tháng 8 2021

undefinedHình như là vậy á 

              Chúc bạn học tốt

22 tháng 10 2021

a: \(\dfrac{7}{4}+\dfrac{-3}{5}=\dfrac{35-12}{20}=\dfrac{23}{20}\)

d: \(\left(-\dfrac{1}{4}\right)^2\cdot\dfrac{4}{11}+\dfrac{7}{11}\cdot\left(-\dfrac{1}{4}\right)^2=\dfrac{1}{16}\)

22 tháng 10 2021

\(\dfrac{7}{4}+\dfrac{-3}{5}=\dfrac{35}{20}+\dfrac{-12}{20}=\dfrac{23}{20}\)

28 tháng 8 2019

a,\(\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}=\frac{x+1}{8}+\frac{x+1}{9}\) (1)

<=> \(\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}-\frac{x+1}{8}-\frac{x+1}{9}=0\)

<=> \(\left(x+1\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{8}-\frac{1}{9}\right)=0\)

=> x+1=0 (vì \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{8}-\frac{1}{9}\ne0\))

<=> x=-1

Vậy pt (1) có tập nghiệm S\(=\left\{-1\right\}\)

b, \(\frac{x+6}{2015}+\frac{x+5}{2016}+\frac{x+4}{2017}=\frac{x+3}{2018}+\frac{x+2}{2019}+\frac{x+1}{2010}\)(2)

<=> \(\frac{x+6}{2015}+1+\frac{x+5}{2016}+1+\frac{x+4}{2017}+1=\frac{x+3}{2018}+1+\frac{x+2}{2019}+1+\frac{x+1}{2020}+1\)

<=> \(\frac{x+2021}{2015}+\frac{x+2021}{2016}+\frac{x+2021}{2017}-\frac{x+2021}{2018}-\frac{x+2021}{2019}-\frac{x+2021}{2020}=0\)

<=> \(\left(x+2021\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)

=> x+2021=0(vì \(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\))

<=> x=-2021

Vậy pt (2) có tập nghiệm S=\(\left\{-2021\right\}\)

c,\(\frac{x+6}{2016}+\frac{x+7}{2017}+\frac{x+8}{2018}=\frac{x+9}{2019}+\frac{x+10}{2020}+1\) (3)

<=> \(\frac{x+6}{2016}-1+\frac{x+7}{2017}-1+\frac{x+8}{2018}-1=\frac{x+9}{2019}-1+\frac{x+10}{2020}-1+1-1\)

<=> \(\frac{x-2010}{2016}+\frac{x-2010}{2017}+\frac{x-2010}{2018}=\frac{x-2010}{2019}+\frac{x-2010}{2020}\)

<=> \(\frac{x-2010}{2016}+\frac{x-2010}{2017}+\frac{x-2010}{2018}-\frac{x-2010}{2019}-\frac{x-2010}{2020}=0\)

<=> \(\left(x-2010\right)\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)

=> x-2010=0 (vì \(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\))

<=> x=2010

Vậy pt (3) có tập nghiệm S=\(\left\{2010\right\}\)

d, \(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15\) (4)

<=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=15-1-2-3-4-5\)

<=> \(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)

<=> (x-100)(\(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\))=0

=> x -100=0(vì \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\))

<=> x=100

Vậy pt (4) có tập nghiệm S=\(\left\{100\right\}\)

28 tháng 8 2019

a) \(\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}=\frac{x+1}{8}+\frac{x+1}{9}\)

\(\Leftrightarrow\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}-\frac{x+1}{8}-\frac{x+1}{9}=0\)

\(\Leftrightarrow\left(x+1\right).\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{8}-\frac{1}{9}\right)=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=0-1\)

\(\Rightarrow x=-1\)

Vậy \(x=-1.\)

Mình chỉ làm câu a) thôi nhé.

Chúc bạn học tốt!

7 tháng 10 2020

Ta có: \(\left|x+\frac{1}{2021}\right|\ge0\) ; \(\left|x+\frac{2}{2021}\right|\ge0\) ; ... ; \(\left|x+\frac{2020}{2021}\right|\ge0\) \(\left(\forall x\right)\)

\(\Rightarrow\left|x+\frac{1}{2021}\right|+\left|x+\frac{2}{2021}\right|+...+\left|x+\frac{2020}{2021}\right|\ge0\left(\forall x\right)\)

\(\Rightarrow2021x\ge0\Rightarrow x\ge0\)

Từ đó ta được: \(x+\frac{1}{2021}+x+\frac{2}{2021}+...+x+\frac{2020}{2021}=2021x\)

\(\Leftrightarrow2020x+\frac{1+2+...+2020}{2021}=2021x\)

\(\Leftrightarrow x=\frac{\left(2020+1\right)\left[\left(2020-1\right)\div1+1\right]}{2021}\)

\(\Leftrightarrow x=\frac{2021\cdot2020}{2021}=2020\)

Vậy x = 2020

11 tháng 3 2021

\(\left|\frac{x+1}{2021}\right|+\left|\frac{x+2}{2021}\right|+...+\left|\frac{x+2020}{2021}\right|=2021x\)

Ta có:\(\left|\frac{x+1}{2021}\right|\ge0;\left|\frac{x+2}{2021}\right|\ge0;....;\left|\frac{x+2020}{2021}\right|\ge0\forall x\)

\(\Rightarrow\left|\frac{x+1}{2021}\right|+\left|\frac{x+2}{2021}\right|+...+\left|\frac{x+2020}{2021}\right|\ge0\forall x\)

\(\Rightarrow2021x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\frac{x+1}{2021}+\frac{x+2}{2021}+...+\frac{x+2020}{2021}=2021x\)

\(\Rightarrow x+\frac{1}{2021}+x+\frac{2}{2021}+...+x+\frac{2020}{2021}=2021x\)

\(\Rightarrow2020x+\frac{1+2+...+2020}{2021}=2021x\)

\(\Rightarrow x=2020\)

2 tháng 9 2019

=> (x+2020)/5=(x+2020)/6=(x+2020)/3+(x+2020)/2

=>(x+2020)(1/5+1/6)=(x+2020)(1/3+1/2)

Với x+2020=0=>x=-2020

Với x+2020 khác 0=>1/5+1/6=1/3+1/2 ,vô lí 

Vậy x=-2020