K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2023

Điểm \(A\left( { - 3;3} \right) \Rightarrow \) hoành độ là -3 và tung độ là 3.

Điểm \(B\left( {3;3} \right) \Rightarrow \) hoành độ là 3 và tung độ là 3.

Điểm \(C\left( {3; - 3} \right) \Rightarrow \) hoành độ là 3 và tung độ là -3.

Điểm \(D\left( { - 3; - 3} \right) \Rightarrow \) hoành độ là -3 và tung độ là -3.

Các cạnh của tứ giác \(ABCD\) bằng nhau và các góc của tứ giác \(ABCD\) bằng nhau và bằng \(90^\circ \).

Bài 2: 

Ta có: \(3n^3+10n^2-5⋮3n+1\)

\(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow3n\in\left\{0;-3;3\right\}\)

hay \(n\in\left\{0;-1;1\right\}\)

10 tháng 12 2023

a: Xét tứ giác ABQN có

\(\widehat{BQN}=\widehat{QNA}=\widehat{NAB}=90^0\)

=>ABQN là hình chữ nhật

b: Xét ΔCAD có

DN,CH là các đường cao

DN cắt CH tại M

Do đó: M là trực tâm của ΔCAD

=>AM\(\perp\)CD

c: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)

Do đó: ΔHAB đồng dạng với ΔHCA

=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)

=>\(HA^2=HB\cdot HC\)

=>\(HA=\sqrt{HB\cdot HC}\)

 

10 tháng 12 2023

loading...  

a) \(\left(x+2y\right)^2=x^2+2.x.2y+\left(2y\right)^2=x^2+4xy+4y^2\)

b) \(\left(3-x\right).\left(3+x\right)=9+3x-3x-x^2=9-x^2=3^2-x^2\)

c) \(\left(5-x\right)^2=5^2-2.5.x+x^2=25-10x+x^2\)

d) \(\left(3+y\right)^2=3^2+2.3.y+y^2=9+6y+y^2\)

29 tháng 6 2019

a) x²+4xy+4y² b)x(9-x²) = 9x-x³ c)25-10x+x² d)9+6y+x²

12 tháng 9 2023

Ta biểu diễn các điểm \(M\left( {1;1} \right);N\left( {4;1} \right);P\left( {2; - 1} \right);Q\left( { - 1; - 1} \right)\) trên hệ trục tọa độ ta được:

 

Từ hình vẽ ta thấy, độ dài đoạn thẳng \(MN = 3;QP = 3\)

Lại có: \(MN//Ox;QP//Ox \Rightarrow MN//QP\).

Tứ giác \(MNPQ\) có: \(MN//PQ;MN = PQ \Rightarrow \) tứ giác \(MNPQ\) là hình bình hành.

30 tháng 8 2021

1) \(A=36x^2+12x+1=\left(6x+1\right)^2\ge0\)

\(minA=0\Leftrightarrow x=-\dfrac{1}{6}\)

2) \(B=9x^2+6x+1=\left(3x+1\right)^2\ge0\)

\(minB=0\Leftrightarrow x=-\dfrac{1}{3}\)

4) \(D=x^2-4x+y^2-8y+6=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\) 

\(minD=-14\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

30 tháng 8 2021

3) \(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)

\(minC\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

5) \(E=\left(x-8\right)^2+\left(x+7\right)^2=2x^2-2x+113=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{225}{2}\ge\dfrac{225}{2}\)

\(minE=\dfrac{225}{2}\Leftrightarrow x=\dfrac{1}{2}\)

f: \(3ab-6a+b-2\)

\(=3a\left(b-2\right)+\left(b-2\right)\)

\(=\left(b-2\right)\left(3a+1\right)\)