K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 7 2021

\(y=\left|x+1\right|+\sqrt{\left(x-2\right)^2}=\left|x+1\right|+\left|x-2\right|\)

\(\Rightarrow\left\{{}\begin{matrix}y=2x-1\text{ với }x\ge2\\y=1-2x\text{ với }x\le-1\\y=3\text{ với }-1\le x\le2\end{matrix}\right.\) 

Từ đó ta có đồ thị hàm số như sau (vẽ 3 đồ thị hàm bậc nhất xác định trên trên ở từng khoảng của chúng)

undefined

Từ đồ thị \(\Rightarrow y_{min}=3\) khi \(-1\le x\le2\)

1: Theo đề, ta có:

-b/2*(-1)=5/2

=>-b/-2=5/2

=>b=5

2: y=-x^2+5x-4

loading...

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Để \(y = 8 \Leftrightarrow \frac{1}{2}{x^2} = 8 \Leftrightarrow {x^2} = 16 \Leftrightarrow x = 4\) hoăc \(x =  - 4\)

b) Vẽ đồ thị y=2x+1:

-Là đồ thị bậc nhất nên đồ thị là đường thẳng đi qua điểm có tọa độ (0; 1) và

(-1; -1)

Vẽ đồ thị \(y = 2{x^2}\)

- Đi qua điểm (1; 2) ; (-1; 2);(0;0)

5 tháng 10 2023

\(y=x^2-1\)

Miền xác định \(D=R\)

 

loading...

24 tháng 9 2023

Tham khảo:

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = f(x) = {x^2} - 4x + 3\) là một parabol (P1):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 4)}}{{2.1}} = 2;{y_S} = {2^2} - 4.2 + 3 =  - 1.\)

+ Có trục đối xứng là đường thẳng \(x = 2\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

+ Bề lõm quay lên trên vì \(a = 1 > 0\)

+ Cắt trục tung tại điểm có tung độ bằng 3, tức là đồ thị đi qua điểm có tọa độ (0; 3).

Ta vẽ được đồ thị như hình dưới.

*So sánh với đồ thị hàm số ở Ví dụ 2a:

Giống nhau: Có chung trục đối xứng

Khác nhau:

Điểm đỉnh và giao điểm với trục tung của hai hàm số đối xứng với nhau qua trục Ox.

Bề lõm của (P) xuống dưới còn (P1) quay lên trên.

Nhận xét chung: Hai đồ thị này đối xứng với nhau qua trục Ox.

16 tháng 6 2018

Giải bài tập Toán 10 | Giải Toán lớp 10

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Đồ thị hàm số có đỉnh \(I\left( {2; - 7} \right)\)

Trục đối xứng là x=2

Giao điểm của parabol với trục tung là (0;-3)

Điểm đối xứng với điểm (0;-3) qua trục đối xứng x=2 là (4;-3)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

b) Đồ thị hàm số có đỉnh \(I\left( { - 1;0} \right)\)

Trục đối xứng là x=-1

Giao điểm của parabol với trục tung là (0;1)

Giao điểm của parabol với trục hoành là (-1;0)

Điểm đối xứng với điểm (0;1) qua trục đối xứng x=-1 là (-2;1)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

c) Đồ thị hàm số có đỉnh \(I\left( {0; - 2} \right)\)

Trục đối xứng là x=0

Giao điểm của parabol với trục tung là (0;-2)

Cho x=1=>y=-3

=> Điểm A(1;-3) thuộc đồ thị.

Điểm đối xứng với A qua trục đối xứng x=0 là điểm B(-1;-3).

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số: