Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biết rằng 3n+1 và 5n+4(Với n ϵ N)la hai so khong nguyen to cung nhau.Tim UCLN(3n+1;5n+4)
Giúp tớ với!
Gọi d là ƯCLN của 3n+1 và 5n+4
=> 3n+1 chia hết cho d;5n+4 chia hết cho d
=> 15n+5 chia hết cho d;15n+12 chia hết cho d
=> (15n+12-15n+5) chia hết cho d
=> 7 chia hết cho d
=> d \(\in\) Ư(7) = {-1;1;7;-7}
Vậy ƯCLN của 3n+1 và 5n+4 là 7
Gọi UCLN(3n+2;2n+1) = d
Ta có : 3n+2 chia hết cho d suy ra 6 n+4 chia hết cho d
2n+1 chia hết cho d suy ra 6n+3 chia hết cho d
Do đó (6n+4)-(6n +3) chia hết cho d suy ra 6n+4-6n-3 chia hết cho d
Suy ra 1 chia hết cho d suy ra d=1 hay với mọi n thuộc N thì 3n+2 và 2n+1 là hai số nguyên tố cùng nhau (đpcm)
Gọi d \(\inƯC\left(3n+2,2n+1\right);d\in N\)*
\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}\)
=> ( 6n + 4 ) - ( 6n + 3 ) \(⋮d\)
=> 1 \(⋮d\)
=> d = 1
Vậy UCLN(3n+2,2n+1) = 1 với mọi n\(\in N\)
ta lập biểu thưc vfhgjhkjggj
fhfhgjh;hjghg-gjgjh=ggrutrutiyỳjkjfgf[ỵt[tjrgtgfugeidgưeuđewvd76e
a.b.c.d.e.f.g=100
fsjshssiusksuusmsumsú,súksúksúlsusúkúlsú=shsjsk-sssskảy,hehhhugeywhoewugrfteocjnr;djfctta
ta lập luôn 1 biểu thức ậmkrgkfhrhfytf7eỷ6ềwỷwt9fuềe9re6dteudfudỷ4hd94
a) Ta đặt (2n+10(2n+3)=d
=> 2n+1 chia hết cho d
(2n+3) chia hết cho d
vậy (2n+3) - (2n+1) chia hết cho d
suy ra d thuộc Ơ1;2} vì d là u của các số lẻ suy ra d =1 vậy ucln (2n+1)(2n+2) =1
3